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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

Question: How do we define best fit line?
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

Question: How do we define best fit line?

A line that minimises the sum of squared distance of the n points
to the line.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

Question: How do we define best fit line?

A line that minimises the sum of squared distance of the n points
to the line.
Claim: The best fit line maximises the sum of projections squared
of the n points to the line.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

The best fit line through the origin is one that minimises the sum
of squared distance of the n points to the line.
Let v denote a unit vector (d × 1 matrix) in the direction of the
best fit line.
Claim: The sum of squared lengths of projections of the points
onto v is ||Av||2.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

The best fit line through the origin is one that minimises the sum
of squared distance of the n points to the line.
Let v denote a unit vector (d × 1 matrix) in the direction of the
best fit line.
Claim: The sum of squared lengths of projections of the points
onto v is ||Av||2.
So, the best fit line is defined by unit vector v that maximises
||Av||.
This is the first singular vector of the matrix A. So, the first
singular vector is defined as:

v1 = arg max
||v||=1

||Av||
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

The best fit line through the origin is one that minimises the sum
of squared distance of the n points to the line.
Let v denote a unit vector (d × 1 matrix) in the direction of the
best fit line.
Claim: The sum of squared lengths of projections of the points
onto v is ||Av||2.
So, the best fit line is defined by unit vector v that maximises
||Av||.
This is the first singular vector of the matrix A. So, the first
singular vector is defined as:

v1 = arg max
||v||=1

||Av||

The value σ1 = ||Av1|| is called the first singular value of A.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

The first singular vector is defined as:

v1 = arg max
||v||=1

||Av||

The value σ1 = ||Av1|| is called the first singular value of A.
So, σ21 is equal to the sum of squared length of projections.
Note that if all the data points are “close” to a line through the
origin, then the first singular vector gives such a line.
Question: if the data points are close to a plane (and in general
close to a k-dimensional subspace), then how do we find such a
plane?
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit plane through the origin for the given n
points.

Let v1 denote the first singular vector of A.
Idea: Find a unit vector v perpendicular to v1 that maximises
||Av||. Output the plane through the origin defined by vectors v1
and v.
Claim: The plane defined above indeed maximises sum of squared
distances of all the points.
The second singular vector is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av||.

The value σ2 = ||Av2|| is called the second singular value of A.
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Best Fit Subspaces and SVD
Best fit plane

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit plane through the origin for the given n
points.

Let v1 denote the first singular vector of A.
The second singular vector is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av||.

The value σ2 = ||Av2|| is called the second singular value of A.

Theorem

For any matrix A, the plane spanned by v1 and v2 is the best fit plane.
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Best Fit Subspaces and SVD
Best fit plane

The first singular vector is defined as: v1 = arg max||v||=1 ||Av||.
The second singular vector is defined as:
v2 = arg max||v||=1,v⊥v1 ||Av||.

Theorem

For any matrix A, the plane spanned by v1 and v2 is the best fit plane.

Proof sketch

Let W denote the best fit plane for A.
Claim 1: There exists an orthonormal basis (w1,w2) of W such
that w2 is perpendicular to v1.
Claim 2: ||Aw1||2 ≤ ||Av1||2.
Claim 3: ||Aw2||2 ≤ ||Av2||2.
This gives ||Aw1||2 + ||Aw2||2 ≤ ||Av1||2 + ||Av2||2.
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Best Fit Subspaces and SVD
Best fit subspace

The first singular vector and first singular value is defined as:

v1 = arg max
||v||=1

||Av|| and σ1 = ||Av1||

The second singular vector and second singular value is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av|| and σ2 = ||Av2||.

The third singular vector and third singular value is defined as:

v3 = arg max
||v||=1,v⊥v1,v2

||Av|| and σ3 = ||Av3||.

...and so on.
Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.

Theorem

Let A be any n × d matrix with r singular vectors v1, ..., vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, ..., vk. For each k, Vk is
the best-fit k-dimensional subspace for A.
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Best Fit Subspaces and SVD
Best fit subspace

The first singular vector and first singular value is defined as:

v1 = arg max
||v||=1

||Av|| and σ1 = ||Av1||

The second singular vector and second singular value is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av|| and σ2 = ||Av2||.

The third singular vector and third singular value is defined as:

v3 = arg max
||v||=1,v⊥v1,v2

||Av|| and σ3 = ||Av3||.

...and so on.
Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.
The vectors v1, ..., vr are more specifically called the right singular
vectors.
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Best Fit Subspaces and SVD
Best fit subspace

The first singular vector and first singular value is defined as:

v1 = arg max
||v||=1

||Av|| and σ1 = ||Av1||

The second singular vector and second singular value is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av|| and σ2 = ||Av2||.

The third singular vector and third singular value is defined as:

v3 = arg max
||v||=1,v⊥v1,v2

||Av|| and σ3 = ||Av3||.

...and so on.
Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.
The vectors v1, ..., vr are more specifically called the right singular
vectors.
For any singular vector vi, σi = ||Avi|| may be interpreted as the
component of the matrix A along vi.
Given this interpretation, the “the components should add up to give
the whole content of A”.
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Best Fit Subspaces and SVD
Frobenius Norm

Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.
The vectors v1, ..., vr are more specifically called the right singular
vectors.
For any singular vector vi, σi = ||Avi|| may be interpreted as the
component of the matrix A along vi.
Given this interpretation, the “the components should add up to give
the whole content of A”.
For any row aj in the matrix A, we can write ||aj ||2 =

∑r
i=1(aj · vi)2.

This further gives:

n∑
j=1

||aj ||2 =
n∑

j=1

r∑
i=1

(aj · vi)2 =
r∑

i=1

||Avi||2 =
r∑

i=1

σ2i .
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Best Fit Subspaces and SVD
Frobenius Norm

Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.
The vectors v1, ..., vr are more specifically called the right singular
vectors.
For any singular vector vi, σi = ||Avi|| may be interpreted as the
component of the matrix A along vi.
Given this interpretation, the “the components should add up to give
the whole content of A”.
For any row aj in the matrix A, we can write ||aj ||2 =

∑r
i=1(aj · vi)2.

This further gives:

n∑
j=1

||aj ||2 =
n∑

j=1

r∑
i=1

(aj · vi)2 =
r∑

i=1

||Avi||2 =
r∑

i=1

σ2i .

The LHS of the above equation may be interpreted as “content of the
matrix” defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given n × d matrix A, denoted by ||A||F , is

defined as: ||A||F =
√∑n

i=1

∑d
j=1 A

2
i ,j .
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Best Fit Subspaces and SVD
Frobenius Norm

For any row aj in the matrix A, we can write ||aj ||2 =
∑r

i=1(aj · vi)2.
This further gives:

n∑
j=1

||aj ||2 =
n∑

j=1

r∑
i=1

(aj · vi)2 =
r∑

i=1

||Avi||2 =
r∑

i=1

σ2i .

The LHS of the above equation may be interpreted as “content of the
matrix” defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given n × d matrix A, denoted by ||A||F , is

defined as: ||A||F =
√∑n

i=1

∑d
j=1 A

2
i ,j .

Theorem

For any matrix A, the sum of squares of the right singular values equals
the square of the Frobenius norm of the matrix.
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Singular Value Decomposition (SVD)
Left singular vectors

Let v1, ..., vr be the right singular vectors and σ1, ..., σr be the
corresponding singular values of matrix A.
The left singular vectors are defined as ui = 1

σi
Avi .

σiui may be interpreted as a vector whose components are the
projections of the rows of A onto vi .
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Singular Value Decomposition (SVD)
Left singular vectors

Let v1, ..., vr be the right singular vectors and σ1, ..., σr be the
corresponding eigenvalues of matrix A.
The left singular vectors are defined as ui = 1

σi
Avi .

σiui may be interpreted as a vector whose components are the
projections of the rows of A onto vi .
σiuiv

T
i is a rank one matrix whose rows can be interpreted as

component of rows of A along vi .
Given this, the following decomposition of A into rank one matrices
should make sense (we will prove this): A =

∑r
i=1 σiuiv

T
i .

Theorem

Let A be any n × d matrix with right singular vectors v1, ..., vr ,
left-singular vectors u1, ...,ur , and corresponding singular values σ1, ..., σr .
Then A =

∑r
i=1 σiuiv

T
i .
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Singular Value Decomposition (SVD)

Theorem

Let A be any n × d matrix with right singular vectors v1, ..., vr ,
left-singular vectors u1, ...,ur , and corresponding singular values σ1, ..., σr .
Then A =

∑r
i=1 σiuiv

T
i .

Proof sketch

Lemma: Matrices A and B are identical iff for all vectors v, Av = Bv.
Let B =

∑r
i=1 σiuiv

T
i .

For any j , Avj = σjuj from the definition of uj .
Bvj =

(∑r
i=1 σiuiv

T
i

)
vj = σjuj from orthonormality.

Fact: Any vector v can be written as a linear combination of right
eigenvectors v1, ..., vr and a vector perpendicular to v1, ..., vr .
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Singular Value Decomposition (SVD)

Theorem

Let A be any n × d matrix with right singular vectors v1, ..., vr ,
left-singular vectors u1, ...,ur , and corresponding singular values
σ1, ..., σr . Then A =

∑r
i=1 σiuiv

T
i .

The decomposition A =
∑r

i=1 σiuiv
T
i is called the Singular Value

Decomposition (or SVD in short).
In matrix notation, we can write A = UDV T where:

U is a n × r matrix where the i th column is ui .
D is a r × r diagonal matrix with the i th diagonal element σi .
V is a d × r matrix where the i th column is vi .

Question: How do we compute the SVD?
Question: What are the applications of SVD?
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Singular Value Decomposition (SVD)
Best rank-k approximation

Let A =
∑r

i=1 σiuiv
T
i be the SVD of an n × d matrix A.

For k ∈ {1, ..., r} let

Ak =
k∑

i=1

σiuiv
T
i (i.e., sum truncated to first k elements)

Claim 1: Ak has rank k.
Claim 2: The rows of Ak are the projections of the rows of A onto the
subspace Vk spanned by the first k singular vectors of A.
We will prove that Ak is the best rank k approximation to A where
the error is measured in terms of the Frobenius norm.

Theorem

For any matrix B with rank at most k :

||A− Ak ||F ≤ ||A− B||F .
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Singular Value Decomposition (SVD)
Best rank-k approximation

Theorem

For any matrix B with rank at most k :

||A− Ak ||F ≤ ||A− B||F .

The above theorem tells us that Ak is a good approximation for A
(w.r.t. Frobenius norm).
The approximation Ak also is good for computation of product with
any vector x with ||x|| ≤ 1.

Computing Ax would cost O(nd) multiplications.

However, computing Ak =
∑k

i=1 σiuiv
T only costs O(kd + nk)

multiplications.

Question: Is Ak best rank-k approximation to A w.r.t. the
computation Ax for an arbitrary x with ||x|| ≤ 1?

We want a rank-k matrix B such that max||x||≤1 ||(A− B)x|| is
minimized.
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Singular Value Decomposition (SVD)
Best rank-k approximation

Theorem

For any matrix B with rank at most k :

||A− Ak ||F ≤ ||A− B||F .

The above theorem tells us that Ak is a good approximation for A
(w.r.t. Frobenius norm).
The approximation Ak also is good for computation of product with
any vector x with ||x|| ≤ 1.

Computing Ax would cost O(nd) multiplications.

However, computing Ak =
∑k

i=1 σiuiv
T only costs O(kd + nk)

multiplications.

Question: Is Ak best rank-k approximation to A w.r.t. the
computation Ax for an arbitrary x with ||x|| ≤ 1?

We want a rank-k matrix B such that max||x||≤1 ||(A− B)x|| is
minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by ||A||2, is defined
as: ||A||2 = max||x||≤1 ||Ax||.
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Singular Value Decomposition (SVD)
Best rank-k approximation

The approximation Ak also is good for computation of product with
any vector x with ||x|| ≤ 1.

Computing Ax would cost O(nd) multiplications.

However, computing Ak =
∑k

i=1 σiuiv
T only costs O(kd + nk)

multiplications.

Question: Is Ak best rank-k approximation to A w.r.t. the
computation Ax for an arbitrary x with ||x|| ≤ 1?

We want a rank-k matrix B such that max||x||≤1 ||(A− B)x|| is
minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by ||A||2, is defined
as: ||A||2 = max||x||≤1 ||Ax||.

Claim: ||A||2 = σ1.
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Singular Value Decomposition (SVD)
Best rank-k approximation

The approximation Ak also is good for computation of product with
any vector x with ||x|| ≤ 1.

Computing Ax would cost O(nd) multiplications.

However, computing Ak =
∑k

i=1 σiuiv
T only costs O(kd + nk)

multiplications.

Question: Is Ak best rank-k approximation to A w.r.t. the
computation Ax for an arbitrary x with ||x|| ≤ 1?

We want a rank-k matrix B such that max||x||≤1 ||(A− B)x|| is
minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by ||A||2, is defined
as: ||A||2 = max||x||≤1 ||Ax||.

Claim: ||A||2 = σ1.
The question can now be rephrased as:
Is Ak the best rank-k approximation to A w.r.t. the spectral norm?
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Singular Value Decomposition (SVD)
Best rank-k approximation

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by ||A||2, is defined
as: ||A||2 = max||x||≤1 ||Ax||.

Question: Is Ak the best rank-k approximation to A w.r.t. the
spectral norm?

Theorem

Let A be any n × d matrix. For any matrix B of rank at most k :

||A− Ak ||2 ≤ ||A− B||2.

First, we show that the left singular vectors u1, ...,ur are pairwise
orthogonal.
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Singular Value Decomposition (SVD)
Best rank-k approximation

Theorem

The left singular vectors u1, ...,ur are pairwise orthogonal.
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Singular Value Decomposition (SVD)
Best rank-k approximation

Theorem

Let A be any n × d matrix. For any matrix B of rank at most k :

||A− Ak ||2 ≤ ||A− B||2.

First, we show that the left singular vectors u1, ...,ur are pairwise
orthogonal.

Theorem

The left singular vectors u1, ...,ur are pairwise orthogonal.

We will also need the following theorem.

Theorem

||A− Ak ||22 = σ2k+1.
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Singular Value Decomposition (SVD)
Best rank-k approximation

Theorem

Let A be any n × d matrix. For any matrix B of rank at most k :

||A− Ak ||2 ≤ ||A− B||2.

Theorem

The left singular vectors u1, ...,ur are pairwise orthogonal.

Theorem

||A− Ak ||22 = σ2k+1.

Finally, we show the following:

Theorem

Let A be an n × d matrix. For any matrix B of rank at most k :

||A− Ak ||2 ≤ ||A− B||2.
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Singular Value Decomposition (SVD)

Exercise: Show that ui ’s are the right singular vectors for the
matrix AT .
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Power Method for Singular Value Decomposition (SVD)
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Singular Value Decomposition (SVD)
Power method for SVD

Let B = ATA
Question: Can you point out some interesting properties of B?
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Singular Value Decomposition (SVD)
Power method for SVD

Let B = ATA
B =

∑r
i=1 σ

2
i viv

T
i
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Singular Value Decomposition (SVD)
Power method for SVD

Let B = ATA
B =

∑r
i=1 σ

2
i viv

T
i

Question: Can we obtain a similar expression for B2 and in general
Bk?
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Singular Value Decomposition (SVD)
Power method for SVD

Let B = ATA
B =

∑r
i=1 σ

2
i viv

T
i

Question: Can we obtain a similar expression for B2 and in general
Bk?
Bk =

∑r
i=1 σ

2k
i viv

T
i

So, if σ1 > σ2, then normalizing the first column of Bk should give a
good estimate for v1.
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Singular Value Decomposition (SVD)
Power method for SVD

Let B = ATA
B =

∑r
i=1 σ

2
i viv

T
i

Question: Can we obtain a similar expression for B2 and in general
Bk?
Bk =

∑r
i=1 σ

2k
i viv

T
i

So, if σ1 > σ2, then normalizing the first column of Bk should give a
good estimate for v1.
A faster method:

Computing Bk may be costly.
Select a random vector x =

∑d
i=1 civi .

Claim: Bkx ≈ σ2k
1 c1v1

So, normalizing Bkx approximates v1.
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Singular Value Decomposition (SVD)
Power method for SVD

A faster method:

Computing Bk may be costly.
Select a random vector x =

∑d
i=1 civi .

Claim: Bkx ≈ σ2k
1 c1v1

So, normalizing Bkx approximates v1.

Given mini<j log (σiσj ) ≥ λ, the following algorithm estimates (within ε

error with probability ≥ (1− δ)) the first singular value and singular
vectors.

Algorithm

1. Generate x0 from a spherical gaussian with mean 0 and variance 1.

2. s ← log
(
8d log (2d/δ)

εδ

)
/2λ

3. For i = 1 to s
4. xi ← (ATA)xi−1
5. v1 ← xi/||xi ||
6. σ1 ← ||Av1||
7. u1 ← Av1/σ1
8. return(σ1,u1, v1)
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Singular Value Decomposition (SVD)
Power method for SVD

Let B = ATA
B =

∑r
i=1 σ

2
i viv

T
i

Question: Can we obtain a similar expression for B2 and in general
Bk?
Bk =

∑r
i=1 σ

2k
i viv

T
i

So, if σ1 > σ2, then normalizing the first column of Bk should give a
good estimate for v1.
A faster method:

Computing Bk may be costly.
Select a random vector x =

∑d
i=1 civi .

Claim: Bkx ≈ σ2k
1 c1v1

So, normalizing Bkx approximates v1.

The above approximations are with respect to the fact that σ1 is
significantly larger than σ2. What if this is not true?
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Singular Value Decomposition (SVD)
Power method for SVD

Let B = ATA
B =

∑r
i=1 σ

2
i viv

T
i

Question: Can we obtain a similar expression for B2 and in general
Bk?
Bk =

∑r
i=1 σ

2k
i viv

T
i

So, if σ1 > σ2, then normalizing the first column of Bk should give a
good estimate for v1.
A faster method:

Computing Bk may be costly.
Select a random vector x =

∑d
i=1 civi .

Claim: Bkx ≈ σ2k
1 c1v1

So, normalizing Bkx approximates v1.

The above approximations are with respect to the fact that σ1 is
significantly larger than σ2. What if this is not true?

Theorem

Let A be an n × d matrix and x a unit length vector in Rd with xtv1 ≥ δ,
where δ > 0. Let V be the space spanned by the right singular vectors of
A corresponding to singular values greater than (1− ε)σ1. Let w be the

unit vector after k = ln 1/εδ
2ε iterations of the power method, namely

w = (ATA)kx
||(ATA)kx|| . Then w has a component of at most ε perpendicular to V .
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End
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