Linear Programming

Linear Programming: Introduction

- A large class of optimization problems in which the constraints and optimization criterion are linear functions.
- A Linear Programming $(\boldsymbol{L P})$ problem consists of assigning real values to variables such that these variables

1. (Linear constraints) satisfy a set of linear equalities or inequalities, and
2. (Objective function) maximize or minimize a given linear objective function.

Linear Programming: Introduction

- Example: A cottage industry makes two kinds of products P_{1} and P_{2}. The daily demand for P_{1} is 100 and the daily demand for P_{2} is 200. The total amount of items that the industry can produce in a day is 250 . The industry makes profit of $R s .1$ per unit item of type P_{1} and $R s .5$ per unit item of type P_{2}. How many items of P_{1} and P_{2} should the industry produce to make maximum amount of profit?
- Let x_{1} be a variable denoting the amount of P_{1} items produced by the industry and x_{2} the mount of P_{2} items.
- The goal is to maximize the linear objective function:

$$
1 \cdot x_{1}+5 \cdot x_{2}
$$

under the linear constraints:

$$
x_{1} \geq 0, x_{2} \geq 0, x_{1} \leq 100, x_{2} \leq 200, x_{1}+x_{2} \leq 250
$$

Linear Programming: Introduction

- Problem(LP): Maximize the linear objective function:

$$
1 \cdot x_{1}+5 \cdot x_{2}
$$

under the linear constraints:
$x_{1} \geq 0, x_{2} \geq 0, x_{1} \leq 100, x_{2} \leq 200, x_{1}+x_{2} \leq 250$

Linear Programming: Introduction

- Given a Linear Programming problem, we will use the following definitions:
- Feasible solution: An assignment to the variables that satisfy all the linear constraints.
- Example: $x_{1}=50, x_{2}=100$ is a feasible solution.

Linear Programming: Introduction

- Question: Does a Linear Programming problem always have a feasible solution?

Linear Programming: Introduction

- Question: Does a Linear Programming problem always have a feasible solution?
- Not necessarily. Suppose the linear constraints are

$$
\begin{aligned}
& x_{1} \geq 0, x_{2} \geq 0, x_{1} \leq 100, x_{2} \leq 200 \\
& x_{1}+x_{2} \leq 250, x_{1}+10 \cdot x_{2} \geq 3000
\end{aligned}
$$

Linear Programming: Introduction

- Question: Does a Linear Programming problem always have a feasible solution?
- Not necessarily. Suppose the linear constraints are

$$
\begin{aligned}
& x_{1} \geq 0, x_{2} \geq 0, x_{1} \leq 100, x_{2} \leq 200 \\
& x_{1}+x_{2} \leq 250, x_{1}+10 \cdot x_{2} \geq 3000
\end{aligned}
$$

Linear Programming: Introduction

- Infeasible LP: A linear program is said to be infeasible if there are no feasible solutions.

Linear Programming: Introduction

- Unbounded LP: A linear program is said to be unbounded if it is possible to achieve arbitrarily high values of the objective function.
- Example: Maximize $\left(x_{1}+5 \cdot x_{2}\right)$ subject to $x_{1} \geq 0, x_{2} \geq 0, x_{2} \leq 200$.

Linear Programming: Introduction

- Claim: For any linear program that is not infeasible and unbounded, the objective function value is maximized at one of the vertices of the feasible region.

Linear Programming: Introduction

- Naïve idea for solving an LP:
- Try all possible vertex of the feasible region and return the one that maximizes the objective function.

Linear Programming: Introduction

- Naïve idea for solving an LP:
- Try all possible vertex of the feasible region and return the one that maximizes the objective function.
- Suppose the LP has n variables and $m=O(n)$ constraints. How many vertices can the feasible region have in worst case?

Linear Programming: Introduction

- Naïve idea for solving an LP:
- Try all possible vertex of the feasible region and return the one that maximizes the objective function.
- Suppose the LP has n variables and $m=O(n)$ constraints. How many vertices can the feasible region have in worst case?
- Exponentially many! Consider the LP: maximize $\left(x_{1}+x_{2}+\cdots+x_{n}\right)$ subject to $0 \leq x_{1}, x_{2}, \ldots, x_{n} \leq 1$.

Linear Programming: Introduction

- Claim:There is an algorithm that solves any linear programming problem instance that runs in polynomial time.

Linear Programming: Introduction

- Claim: There is an algorithm that solves any linear programming problem instance that runs in polynomial time.
- The optimal solution may assign real numbers to some variables even though all of the constraints of objective function involve integers.

Linear Programming: Introduction

- Claim: There is an algorithm that solves any linear programming problem instance that runs in polynomial time.
- The optimal solution may assign real numbers to some variables even though all of the constraints of objective function involve integers.
- Suppose in addition to the linear constraint, we add another constraint that all the variables should be integers. Such linear programs are called Integer Linear Programs (ILP).
- Integer Linear Program(ILP): Consists of
- Linear objective function
- Linear constraints.
- All variables should be integers.

Decision-ILP: Given the above and an integer k, determine if there is an integer assignment to the variables such that the objective function value is at least k.

Linear Programming: Introduction

- How hard is Decision-ILP?

Linear Programming: Introduction

- How hard is Decision-ILP?
- Claim: Decision-ILP is NP-complete.
- Proof:
- Claim 1: Decision-ILP is in NP.
- Claim 2: 3-SAT \leq_{p} Decision-ILP

Linear Programming: Introduction

- How hard is Decision-ILP?
- Claim: Decision-ILP is NP-complete.
- Proof:
- Claim 1: Decision-ILP is in NP.
- Claim 2: 3-SAT \leq_{p} Decision-ILP
- Proof idea: Given a 3-SAT formula, we construct an instance of Decision-ILP.
For each clause (e.g., $\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right)$) we create a linear constraint (e.g., $x_{1}+1-x_{2}+x_{3} \geq 1$). We further consider constraints $0 \leq x_{1}, \ldots, x_{n} \leq 1$ and that all variables are integers.

Linear Programming: Introduction

- How hard is Decision-ILP?
- Claim: Decision-ILP is NP-complete.
- Proof:
- Claim 1: Decision-ILP is in NP.
- Claim 2: 3-SAT \leq_{p} Decision-ILP
- Proof idea: Given a 3-SAT formula, we construct an instance of DecisionILP.
For each clause (e.g., $\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right)$) we create a linear constraint (e.g., $x_{1}+1-x_{2}+x_{3} \geq 1$). We further consider constraints $0 \leq x_{1}, \ldots, x_{n} \leq 1$ and that all variables are integers.
- Formulating problems as an ILP is a standard way of solving many combinatorial problems.
- Example: Maximum Independent set.
- Consider a $0-1$ variable for each vertex, 1 denoting inclusion. For each edge (x, y), there is a constraint that $x+y \leq 1$.

Linear Programming

Solving problems by formulating as Linear Programs

Linear Programming: Applications

- We saw how some combinatorial problems can be formulated as an Integer Linear Programming (ILP) problem.
- Unfortunately, ILP is hard.
- A number of problems can be formulated as a Linear Programming problem and we know there is a polynomial time algorithm for LP.
- Some interesting applications:
- Shortest $s-t$ path in a directed graph with non-negative weights.
- Maximum flow in a network graph.

Linear Programming: Applications

- Problem (Maximum $S-t$ flow): Given a network graph $G=(V, E)$ with special source S and $\operatorname{sink} t$, find the maximum value of an $S-t$ flow in the graph.
- Let $m=|E|$. We use m variables, one for each edge.
- For an edge (u, v), we will use variable $f_{u v}$ to denote the flow along the edge (u, v).
- We construct the following LP given G.
- Maximize $\sum f_{s v}$
- Subject to ${ }^{(s, v) \in E}$
- $f_{u v} \leq c(u, v)$, for all (u, v) in E.
- $\sum_{(v, u) \in E} f_{v u}=\sum_{(u, v) \in E} f_{u v}$, for all u in $V-\{s, t\}$.
- $f_{u v} \geq 0$.

Linear Programming: Applications

- Problem (Shortest $S-t$ path): Given a weighted, directed graph $G=(V, E)$. Find the length of the shortest path from vertex S to vertex t.
- Let $n=|V|$. We use n variables, one for each vertex.
- For a vertex v, we will use variable d_{v} to denote the length of the shortest path from vertex S to vertex v.
- We construct the following LP given G.
- Maximize d_{t},
- subject to:
- For all edges $(u, v) \in E, d_{v} \leq d u+w(u, v)$.
- $d_{s}=0$.

Linear Programming

Solving an LP

Linear Programming: Solving LP

- To be able to design an algorithm for solving LP problems, it will be useful if we define problems more precisely in some standard format.
- Standard form: A Linear Program is said to be standard form if the following holds:

1. The linear objective function should be maximized.
2. All variables have non-negativity constraint. i.e., for all $i, x_{i} \geq 0$.
3. All the remaining linear constraints are of the following form: $\sum_{j=1}^{n} a_{j} \cdot x_{j} \leq b_{j}$

Linear Programming: Solving LP

- Standard form: A Linear Program is said to be standard form if the following holds:

1. The linear objective function should be maximized.
2. All variables have non-negativity constraint.
i.e., for all $i, x_{i} \geq 0$.
3. All the remaining linear constraints are of the following form: $\sum_{j=1}^{n} a_{j} \cdot x_{j} \leq b_{j}$

- Question: Is there a way to convert any LP problem to an equivalent standard form?
- Equivalence of LP's: Two LP problems P1 and P2 are said to be equivalent if for any feasible solution for P1 with objective value Z, there is a feasible solution of P 2 with the same objective value and vice versa.

Linear Programming: Solving LP

- Standard form: A Linear Program is said to be standard form if the following holds:

1. The linear objective function should be maximized.
2. All variables have non-negativity constraint.
i.e., for all $i, x_{i} \geq 0$.
3. All the remaining linear constraints are of the following form: $\sum_{j=1}^{n} a_{j} \cdot x_{j} \leq b_{j}$

- A general LP problem might not be in standard for because it might have:

1. Equality constraints $(=)$ rather than inequality (\leq).
2. \geq instead of \leq.
3. Variables without non-negativity constraints.
4. Minimization rather than maximization.

Linear Programming: Solving LP

- A general LP problem might not be in standard form because it might have:

1. Equality constraints ($=$) rather than inequality (\leq).

- Idea: $a=b$ can be expresses as $a \leq b$ and $a \geq b$.

2. \geq instead of \leq.
3. Variables without non-negativity constraints.
4. Minimization rather than maximization.

Linear Programming: Solving LP

- A general LP problem might not be in standard form because it might have:

1. Equality constraints $(=)$ rather than inequality (\leq).

- Idea: $a=b$ can be written as $a \leq b$ and $a \geq b$.

2. \geq instead of \leq.

- Idea: $a \geq b$ can be written as $-a \leq-b$.

3. Variables without non-negativity constraints.
4. Minimization rather than maximization.

Linear Programming: Solving LP

- A general LP problem might not be in standard form because it might have:

1. Equality constraints $(=)$ rather than inequality (\leq).

- Idea: $a=b$ can be written as $a \leq b$ and $a \geq b$.

2. \geq instead of \leq.

- Idea: $a \geq b$ can be written as $-a \leq-b$.

3. Variables without non-negativity constraints.

- Idea: Replace a variable x (that has no non-negativity constraint) with ($x^{\prime}-x^{\prime \prime}$) everywhere and put $x^{\prime} \geq 0$ and $x^{\prime \prime} \geq 0$.

4. Minimization rather than maximization.

Linear Programming: Solving LP

- A general LP problem might not be in standard form because it might have:

1. Equality constraints $(=)$ rather than inequality (\leq).

- Idea: $a=b$ can be written as $a \leq b$ and $a \geq b$.

2. \geq instead of \leq.

- Idea: $a \geq b$ can be written as $-a \leq-b$.

3. Variables without non-negativity constraints.

- Idea: Replace a variable x (that has no non-negativity constraint) with ($x^{\prime}-x^{\prime \prime}$) everywhere and put $x^{\prime} \geq 0$ and $x^{\prime \prime} \geq 0$.

4. Minimization rather than maximization.

- Idea: Replace "Minimize $\sum c_{i} . x_{i}$ " with "Maximize $\sum\left(-c_{i}\right) \cdot x_{i}$ ".
- In this case, equivalence of $L P$ is in the sense that the objective values of $L P s$ are negation of each other instead of being same. So, you can solve one to get a solution for the other.

Linear Programming: Solving LP

- Example:
- Minimize $-2 x_{1}+3 x_{2}$
- subject to
- $x_{1}+x_{2}=7$
- $x_{1}-2 x_{2} \leq 4$
- $x_{1} \geq 0$

Linear Programming: Solving LP

- Example: Minimize to Maximize
- Maximize $2 x_{1}-3 x_{2}$
- subject to
- $x_{1}+x_{2}=7$
- $x_{1}-2 x_{2} \leq 4$
- $x_{1} \geq 0$

Linear Programming: Solving LP

- Example: non-negativity constraint for x_{2}
- Maximize $2 x_{1}-3\left(x_{2}{ }^{\prime}-x_{2}{ }^{\prime \prime}\right)$
- subject to

$$
\begin{aligned}
& \cdot x_{1}+\left(x_{2}^{\prime}-x_{2}^{\prime \prime}\right)=7 \\
& \cdot x_{1}-2\left(x_{2}^{\prime}-x_{2}^{\prime \prime}\right) \leq 4 \\
& \cdot x_{1} \geq 0, x_{2}^{\prime} \geq 0, x_{2}^{\prime \prime} \geq 0
\end{aligned}
$$

Linear Programming: Solving LP

- Example: non-negativity constraint for x_{2}
- Maximize $2 x_{1}-3 x_{2}{ }^{\prime}+3 x_{2}{ }^{\prime \prime}$
- subject to

$$
\begin{aligned}
& \cdot x_{1}+x_{2}^{\prime}-x_{2}^{\prime \prime}=7 \\
& -x_{1}-2 x_{2}^{\prime}+2 x_{2}^{\prime \prime} \leq 4 \\
& \cdot x_{1} \geq 0, x_{2}^{\prime} \geq 0, x_{2}^{\prime \prime} \geq 0
\end{aligned}
$$

Linear Programming: Solving LP

- Example: renaming variables
- Maximize $2 x_{1}-3 x_{2}+3 x_{3}$
- subject to
- $x_{1}+x_{2}-x_{3}=7$
- $x_{1}-2 x_{2}+2 x_{3} \leq 4$
- $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$

Linear Programming: Solving LP

- Example: Equality to inequality
- Maximize $2 x_{1}-3 x_{2}+3 x_{3}$
- subject to
- $x_{1}+x_{2}-x_{3} \leq 7$
- $-x_{1}-x_{2}+x_{3} \leq-7$
- $x_{1}-2 x_{2}+2 x_{3} \leq 4$
- $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$

Linear Programming: Solving LP

- Standard form: A Linear Program is said to be standard form if the following holds:

1. The linear objective function should be maximized.
2. All variables have non-negativity constraint.
i.e., for all $i, x_{i} \geq 0$.
3. All the remaining linear constraints are of the following form:

$$
\sum_{j=1}^{n} a_{j} \cdot x_{j} \leq b_{j}
$$

- It will be useful to further convert an LP in standard for to an equivalent LP in Slack form.
- Slack form: For every inequality $\sum_{j} a_{j} x_{j} \leq b_{j}$, we introduce a slack variable s_{j} and replace $\sum_{j} a_{j} x_{j} \leq b_{j}$ with $s_{j}=b_{j}-\sum_{j} a_{j} x_{j}$ and $s_{j} \geq 0$.

Linear Programming: Solving LP

- Example:
- Maximize $2 x_{1}-3 x_{2}+3 x_{3}$
- subject to
- $x_{1}+x_{2}-x_{3} \leq 7$
- $-x_{1}-x_{2}+x_{3} \leq-7$
- $x_{1}-2 x_{2}+2 x_{3} \leq 4$
- $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$

Linear Programming: Solving LP

- Example: Standard form to slack form.
- $z=2 x_{1}-3 x_{2}+3 x_{3}$
- $x_{4}=7-x_{1}-x_{2}+x_{3}$
- $x_{5}=-7+x_{1}+x_{2}-x_{3}$
- $x_{6}=4-x_{1}+2 x_{2}-2 x_{3}$
- $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0, x_{5} \geq 0, x_{6} \geq 0$.
- The variables on the LHS are called basic variables and those on the RHS are called non-basic variables.
- Basic solution: Set all non-basic variables to 0 and compute the value of the basic variables.

Linear Programming: Solving LP

- The variables on the LHS are called basic variables and those on the RHS are called non-basic variables.
- Basic solution: Set all non-basic variables to 0 and compute the value of the basic variables.
- Simplex algorithm:
- Repeat:
- Pivot: Rewrite the LP in slack form such that the objective value of the basic solution increases.

Linear Programming:

The Simplex Algorithm

Linear Programming: Solving LP

- Simplex algorithm:
- Repeat:
- Pivot: Rewrite the LP in slack form such that the objective value of the basic solution increases.
- Example:
- $z=3 x_{1}+x_{2}+2 x_{3}$
- $x_{4}=30-x_{1}-x_{2}-3 x_{3}$
- $x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3}$
- $x_{6}=36-4 x_{1}-x_{2}-2 x_{3}$
- Use $x_{1}=\left(9-x_{6} / 4-x_{2} / 4-x_{3} / 2\right)$

Linear Programming: Solving LP

- Simplex algorithm:
- Repeat:
- Pivot: Rewrite the LP in slack form such that the objective value of the basic solution increases.
- Example:
- $z=3\left(9-x_{6} / 4-x_{2} / 4-x_{3} / 2\right)+x_{2}+2 x_{3}$
- $x_{4}=30-\left(9-x_{6} / 4-x_{2} / 4-x_{3} / 2\right)-x_{2}-3 x_{3}$
- $x_{5}=24-2\left(9-x_{6} / 4-x_{2} / 4-x_{3} / 2\right)-2 x_{2}-5 x_{3}$
- $x_{1}=\left(9-x_{6} / 4-x_{2} / 4-x_{3} / 2\right)$

Linear Programming: Solving LP

- Simplex algorithm:
- Repeat:
- Pivot: Rewrite the LP in slack form such that the objective value of the basic solution increases.
- Example:
- $z=27+x_{2} / 4+x_{3} / 2-3 x_{6} / 4$
- $x_{4}=21-3 x_{2} / 4-5 x_{3} / 2+x_{6} / 4$
- $x_{5}=6-3 x_{2} / 2-4 x_{3}+x_{6} / 2$
- $x_{1}=9-x_{2} / 4-x_{3} / 2-x_{6} / 4$
- Now x_{2}, x_{3}, and x_{6} are the non-basic variables and x_{1}, x_{4}, and x_{5} are the basic variables.
- The objective value of the basic solution is now 27.
- Claim: If the basic solution is feasible for the LP before pivoting, then the basic solution for the LP after pivoting is also feasible.

Linear Programming: Solving LP

- Simplex algorithm:
- Repeat:
- Pivot: Rewrite the LP in slack form such that the objective value of the basic solution increases.
- Example:
- $z=27+x_{2} / 4+x_{3} / 2-3 x_{6} / 4$
- $x_{4}=21-3 x_{2} / 4-5 x_{3} / 2+x_{6} / 4$
- $x_{5}=6-3 x_{2} / 2-4 x_{3}+x_{6} / 2$
- $x_{1}=9-x_{2} / 4-x_{3} / 2-x_{6} / 4$
- Use $x_{3}=3 / 2-3 x_{2} / 8-x_{5} / 4+x_{6} / 8$

Linear Programming: Solving LP

- Simplex algorithm:
- Repeat:
- Pivot: Rewrite the LP in slack form such that the objective value of the basic solution increases.
- Example:
- $z=111 / 4+x_{2} / 16-x_{5} / 8-11 x_{6} / 16$
- $x_{4}=69 / 4+3 x_{2} / 16+5 x_{5} / 8-x_{6} / 16$
- $x_{1}=33 / 4-x_{2} / 16+x_{5} / 8-5 x_{6} / 16$
- $x_{3}=3 / 2-3 x_{2} / 8-x_{5} / 4+x_{6} / 8$
- Now x_{2}, x_{5}, and x_{6} are the non-basic variables and x_{1}, x_{3}, and x_{4} are the basic variables.
- The objective value of the basic solution is now $111 / 4$.

Linear Programming: Solving LP

- Simplex algorithm:
- Repeat:
- Pivot: Rewrite the LP in slack form such that the objective value of the basic solution increases.
- Example:
- $z=111 / 4+x_{2} / 16-x_{5} / 8-11 x_{6} / 16$
- $x_{4}=69 / 4+3 x_{2} / 16+5 x_{5} / 8-x_{6} / 16$
- $x_{1}=33 / 4-x_{2} / 16+x_{5} / 8-5 x_{6} / 16$
- $x_{3}=3 / 2-3 x_{2} / 8-x_{5} / 4+x_{6} / 8$
- Use $x_{2}=4-8 x_{3} / 3-2 x_{5} / 3+x_{6} / 3$

Linear Programming: Solving LP

- Simplex algorithm:
- Repeat:
- Pivot: Rewrite the LP in slack form such that the objective value of the basic solution increases.
- Example:
- $z=28-x_{3} / 6-x_{5} / 6-2 x_{6} / 3$
- $x_{1}=8+x_{3} / 6+x_{5} / 6-x_{6} / 3$
- $x_{2}=4-8 x_{3} / 3-2 x_{5} / 3+x_{6} / 3$
- $x_{4}=18-x_{3} / 2+x_{5} / 2$
- Now the basic solution is the optimal solution.
- The optimal objective value for the initial LP is 28 and the value of the variables are $x_{1}=8, x_{2}=4$, and $x_{3}=0$.

Linear Programming: Solving LP

- Simplex algorithm:
- Repeat:
- Pivot: Rewrite the LP in slack form such that the objective value of the basic solution increases.
- We looked at a contrived example devoid of any complications. Here are some of the complications that could arise:

1. What if the initial basic solution is not a feasible solution?
2. What if the LP is unbounded? How and where do we detect this?
3. What if after a pivoting step the objective value of the basic solution does not increase? What is the running time of the Simplex algorithm?

Linear Programming: Solving LP

- Complications:

1. What if the initial basic solution is not a feasible solution?

- We will determine this in a preprocessing step. If the LP has a feasible solution, then we will rewrite it in a form where the basic solution is feasible.

2. What if the LP is unbounded? How and where do we detect this?

- We will check this while pivoting.

3. What if after a pivoting step the objective value of the basic solution does not increase? What is the running time of the Simplex algorithm?

- This is indeed a problem with Simplex. The algorithm might cycle without increasing the objective value. Simplex is actually not a polynomial time algorithm but it is still used in practice because it works very well on real world instances.

Linear Programming: Solving LP

- (Complication 2) What if the LP is unbounded? How and where do we detect this?
- Consider the following general slack LP that we obtain while running Simplex:
- $z=v+c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$
- $x_{n+1}=b_{1}-a_{11} x_{1}-a_{12} x_{2}-\ldots-a_{1 n x n}$
- $x_{n+2}=b_{2}-a_{21} x_{1}-a_{22} x_{2}-\ldots-a_{2 n \times n}$
- $x_{n+m}=b_{m}-a_{m 1} x_{1}-a_{m 2} x_{2}-\ldots-a_{m n} x_{n}$
- Claim: Suppose $c_{i}>0$ and $a_{1 i}, a_{2 i}, a_{3 i}, \ldots, a_{m i} \leq 0$. Then the LP is unbounded.

Linear Programming: Solving LP

- (Complication 3) What if after a pivoting step the objective value of the basic solution does not increase? What is the running time of the Simplex algorithm?
- Consider the following example:
- $z=8+x_{3}-x_{4}$
- $x_{1}=8-x_{2}-x_{4}$
- $x_{5}=x_{2}-x_{3}$
- We have to pivot using $x_{3}=x_{2}-x_{5}$ but that gives us
- $z=8+x_{2}-x_{4}-x_{5}$
- $x_{1}=8-x_{2}-x_{4}$
- $x_{3}=x_{2}-x_{5}$
- The objective value of the basic solution does not change.

Linear Programming: Solving LP

- (Complication 3) What if after a pivoting step the objective value of the basic solution does not increase? What is the running time of the Simplex algorithm?
- So, the Simplex may cycle between slack forms without increasing the objective value of the basic solution.
- Claim: Each slack form is uniquely determined by the set of basic and non-basic variables.
- Question: What is the upper bound on the number of slack forms that the Simplex cycles without increasing the objective value of the basic solution?

Linear Programming: Solving LP

- (Complication 3) What if after a pivoting step the objective value of the basic solution does not increase? What is the running time of the Simplex algorithm?
- So, the Simplex may cycle between slack forms without increasing the objective value of the basic solution.
- Claim: Each slack form is uniquely determined by the set of basic and non-basic variables.
- Question: What is the upper bound on the number of slack forms that the Simplex cycles without increasing the objective value of the basic solution?
- ${ }^{n+m} C_{m}$. This is the upper bound on the number of different slack forms.

Linear Programming: Solving LP

- (Complication 3) What if after a pivoting step the objective value of the basic solution does not increase? What is the running time of the Simplex algorithm?
- So, the Simplex may cycle between slack forms without increasing the objective value of the basic solution.
- Claim: Each slack form is uniquely determined by the set of basic and non-basic variables.
- Claim: If the Simplex fails to terminate in ${ }^{n+m} C_{m}$ steps, then it cycles.
- There is a way (Bland's rule) to choose the pivoting variables so that Simplex always terminates.

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- We construct the following LP, L^{\prime} in slack form:
- $z=-x_{0}$
- $x_{n+1}=b_{1}-a_{11} x_{1}-a_{12} x_{2}-\ldots-a_{1 n x n}+x_{0}$
- $x_{n+2}=b_{2}-a_{21} x_{1}-a_{22} x_{2}-\ldots-a_{2 n} x_{n}+x_{0}$
- $x_{n+m}=b_{m}-a_{m 1} x_{1}-a_{m 2} x_{2}-\ldots-a_{m n} x_{n}+x_{0}$
- Claim: The given LP has a feasible solution if and only if the optimal objective value of L^{\prime} is 0 .
- So, all we need to do is to solve L^{\prime}. This seems to bring us back to the original problem. However, we see that L^{\prime} is a simple LP.

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- We construct the following LP, L^{\prime} in slack form:
- $z=-x_{0}$
- $x_{n+1}=b_{1}-a_{11} x_{1}-a_{12} x_{2}-\ldots-a_{1 n x n}+x_{0}$
- $x_{n+2}=b_{2}-a_{21} x_{1}-a_{22} x_{2}-\ldots-a_{2 n \times n}+x_{0}$
- $x_{n+m}=b_{m}-a_{m 1} x_{1}-a_{m 2} x_{2}-\ldots-a_{m n} x_{n}+x_{0}$
- Claim: The given LP has a feasible solution if and only if the optimal objective value of L^{\prime} is 0 .
- Claim: L^{\prime} is feasible.
- The basic solution might not be a feasible solution since some $b_{i}<0$.

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- L^{\prime} :
- $z=-x_{0}$
- $x_{n+1}=b_{1}-a_{11} x_{1}-a_{12} x_{2}-\ldots-a_{1 n \times n}+x_{0}$
- $x_{n+2}=b_{2}-a_{21} x_{1}-a_{22} x_{2}-\ldots-a_{2 n x n}+x_{0}$
- $x_{n+m}=b_{m}-a_{m 1} x_{1}-a_{m 2} x_{2}-\ldots-a_{m n} x_{n}+x_{0}$
- The basic solution might not be a feasible solution since some $b_{i}<0$.
- Let b_{i} be the smallest among b_{1}, \ldots, b_{m}. We will pivot using

$$
\mathrm{x}_{n+i}=b_{i}-a_{i 1} x_{1}-\ldots+x_{0}
$$

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- L^{\prime} :
- $z=-x_{0}$
- $x_{n+1}=b_{1}-a_{11} x_{1}-a_{12} x_{2}-\ldots-a_{1 n \times n}+x_{0}$
- $x_{n+2}=b_{2}-a_{21} x_{1}-a_{22} x_{2}-\ldots-a_{2 n \times n}+x_{0}$
- $x_{n+m}=b_{m}-a_{m 1} x_{1}-a_{m 2} x_{2}-\ldots-a_{m n} x_{n}+x_{0}$
- Let b_{i} be the smallest among b_{1}, \ldots, b_{m}. We will pivot using

$$
x_{n+i}=b_{i}-a_{i 1} x_{1}-\ldots+x_{0}
$$

- Claim: The basic solution of the LP obtained after the above pivoting is a feasible solution.

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- Pre-processing algorithm:
- Given L, check if all b_{i} 's are positive. In that case return L.
- Consider L^{\prime}. Perform the pivoting using the equation with smallest b_{i} to obtain $L^{\prime \prime}$.
- Solve $L^{\prime \prime}$ using Simplex and find the optimal objective value $O p t$.
- If ($O p t \neq 0$), then output "LP is infeasible".
- Otherwise, let L_{S} be the LP obtained at the end of the simplex. Do the following:
- If x_{0} is a basic variable in L_{S}, then perform a pivoting step to obtain $L_{s}{ }^{\prime}$.
- Remove all instances of x_{0} and rewrite the objective function of L in terms of non-basic variables of $L_{S}{ }^{\prime}$.

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- Pre-processing algorithm: Example
- L :
- $z=2 x_{1}-x_{2}$
- $x_{3}=2-2 x_{1}+x_{2}$
- $x_{4}=-4-x_{1}+5 x_{2}$
- L^{\prime} :
- $z=$
- x_{0}
- $x_{3}=2-2 x_{1}+x_{2}+x_{0}$
- $x_{4}=-4-x_{1}+5 x_{2}+x_{0}$
- $L^{\prime \prime}$: After Pivot using ($x_{4}=\ldots$)
- $z=-4-x_{1}+5 x_{2}-x_{4}$
- $x_{3}=6-x_{1}-4 x_{2}+x_{4}$
- $x_{0}=4+x_{1}-5 x_{2}+x_{4}$

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- Pre-processing algorithm: Example
- L :
- $z=2 x_{1}-x_{2}$
- $x_{3}=2-2 x_{1}+x_{2}$
- $x_{4}=-4-x_{1}+5 x_{2}$
- L_{S} :
- $z=-x_{0}$
- $x_{2}=4 / 5-x_{0} / 5+x_{1} / 5+x_{4} / 5$
- $x_{3}=14 / 5+4 x_{0} / 5-9 x_{1} / 5+x_{4} / 5$
- L_{S} :
- $z=2 x_{1}-x_{2}=2 x_{1}-\left(4 / 5+x_{1} / 5+x_{4} / 5\right)=-4 / 5+$ $9 x_{1} / 5-x_{4} / 5$
- $x_{2}=4 / 5+x_{1} / 5+x_{4} / 5$
- $x_{3}=14 / 5-9 x_{1} / 5+x_{4} / 5$

End

