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Linear Programming: Introduction
� A large class of optimization problems in which the 

constraints and optimization criterion are linear functions.
� A Linear Programming(LP) problem consists of assigning real 

values to variables such that these variables
1. (Linear constraints) satisfy a set of linear equalities or 

inequalities, and
2. (Objective function) maximize or minimize a given linear

objective function. 



� Example: A cottage industry makes two kinds of products 𝑃1
and 𝑃2. The daily demand for 𝑃1 is 100 and the daily 
demand for 𝑃2 is 200. The total amount of items that the 
industry can produce in a day is 250. The industry makes 
profit of 𝑅𝑠. 1 per unit item of type 𝑃1 and 𝑅𝑠. 5 per unit 
item of type 𝑃2. How many items of 𝑃1 and 𝑃2 should the 
industry produce to make maximum amount of profit?

� Let 𝑥1 be a variable denoting the amount of 𝑃1 items 
produced by the industry and 𝑥2 the mount of 𝑃2 items.

� The goal is to maximize the linear objective function:
1 ⋅ 𝑥1 + 5 ⋅ 𝑥2

under the linear constraints:
𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200, 𝑥1+ 𝑥2 ≤ 250
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� Problem(LP): Maximize the linear objective function:
1 ⋅ 𝑥1 + 5 ⋅ 𝑥2

under the linear constraints:
𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200, 𝑥1+ 𝑥2 ≤ 250

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 5𝑥2 = 1050

𝑥1+ 5𝑥2 = 100



� Given a Linear Programming problem, we will use the 
following definitions:
� Feasible solution: An assignment to the variables that satisfy all 

the linear constraints.
� Example: 𝑥1 = 50, 𝑥2 = 100 is a feasible solution. 
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� Question: Does a Linear Programming problem always have 
a feasible solution?
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� Question: Does a Linear Programming problem always have 
a feasible solution?
� Not necessarily. Suppose the linear constraints are

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200,
𝑥1+ 𝑥2 ≤ 250, 𝑥1+ 10 ⋅ 𝑥2 ≥ 3000
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� Question: Does a Linear Programming problem always have 
a feasible solution?
� Not necessarily. Suppose the linear constraints are

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200,
𝑥1+ 𝑥2 ≤ 250, 𝑥1+ 10 ⋅ 𝑥2 ≥ 3000
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� Infeasible LP: A linear program is said to be infeasible if there 
are no feasible solutions. 
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� Unbounded LP: A linear program is said to be unbounded if 
it is possible to achieve arbitrarily high values of the objective 
function.
� Example: Maximize (𝑥1+ 5 ⋅ 𝑥2)

subject to 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥2 ≤ 200.
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� Claim: For any linear program that is not infeasible and 
unbounded, the objective function value is maximized at one 
of the vertices of the feasible region.
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� Naïve idea for solving an LP: 
� Try all possible vertex of the feasible region and return the one 

that maximizes the objective function. 
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� Naïve idea for solving an LP: 
� Try all possible vertex of the feasible region and return the one 

that maximizes the objective function. 
� Suppose the LP has 𝑛 variables and 𝑚 = 𝑂(𝑛) constraints. 

How many vertices can the feasible region have in worst case?
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� Naïve idea for solving an LP: 
� Try all possible vertex of the feasible region and return the one 

that maximizes the objective function. 
� Suppose the LP has 𝑛 variables and 𝑚 = 𝑂(𝑛) constraints. 

How many vertices can the feasible region have in worst case?
� Exponentially many! Consider the LP: maximize (𝑥1 + 𝑥2 +⋯+ 𝑥𝑛)

subject to 0 ≤ 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ 1. 
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� Claim: There is an algorithm that solves any linear 
programming problem instance that runs in polynomial time.
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� Claim: There is an algorithm that solves any linear 
programming problem instance that runs in polynomial time.

� The optimal solution may assign real numbers to some 
variables even though all of the constraints of objective 
function involve integers.
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� Claim: There is an algorithm that solves any linear programming 
problem instance that runs in polynomial time.

� The optimal solution may assign real numbers to some variables 
even though all of the constraints of objective function involve 
integers.

� Suppose in addition to the linear constraint, we add another 
constraint that all the variables should be integers. Such linear 
programs are called Integer Linear Programs (ILP).

� Integer Linear Program(ILP): Consists of
� Linear objective function
� Linear constraints.
� All variables should be integers.

Decision-ILP: Given the above and an integer 𝑘, determine if there is 
an integer assignment to the variables such that the objective function 
value is at least 𝑘.
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� How hard is Decision-ILP?
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� How hard is Decision-ILP?

� Claim: Decision-ILP is NP-complete.
� Proof: 

� Claim 1: Decision-ILP is in NP.

� Claim 2: 3-SAT ≤! Decision-ILP
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� How hard is Decision-ILP?

� Claim: Decision-ILP is NP-complete.
� Proof: 

� Claim 1: Decision-ILP is in NP.

� Claim 2: 3-SAT ≤! Decision-ILP
� Proof idea: Given a 3-SAT formula, we construct an instance of  

Decision-ILP. 
For each clause (e.g., (𝑥1 ∨ 𝑥2’ ∨ 𝑥3)) we create a linear constraint 
(e.g., 𝑥1 + 1 − 𝑥2 + 𝑥3 ≥ 1). We further consider constraints 
0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 and that all variables are integers.

Linear Programming: Introduction



� How hard is Decision-ILP?
� Claim: Decision-ILP is NP-complete.

� Proof: 
� Claim 1: Decision-ILP is in NP.
� Claim 2: 3-SAT ≤! Decision-ILP

� Proof idea: Given a 3-SAT formula, we construct an instance of Decision-
ILP. 
For each clause (e.g., (𝑥1 ∨ 𝑥2’ ∨ 𝑥3)) we create a linear constraint 
(e.g., 𝑥1 + 1 − 𝑥2 + 𝑥3 ≥ 1). We further consider constraints 
0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 and that all variables are integers.

� Formulating problems as an ILP is a standard way of solving many 
combinatorial problems. 

� Example: Maximum Independent set. 
� Consider a 0 − 1 variable for each vertex, 1 denoting inclusion. For 

each edge (𝑥, 𝑦), there is a constraint that 𝑥 + 𝑦 ≤ 1.
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Linear Programming
Solving problems by formulating as Linear Programs



Linear Programming: Applications
� We saw how some combinatorial problems can be 

formulated as an Integer Linear Programming (ILP) 
problem. 

� Unfortunately, ILP is hard.
� A number of problems can be formulated as a Linear 

Programming problem and we know there is a polynomial 
time algorithm for LP.

� Some interesting applications: 
� Shortest 𝑠 − 𝑡 path in a directed graph with non-negative 

weights.
� Maximum flow in a network graph. 



Linear Programming: Applications
� Problem (Maximum 𝑠 − 𝑡 flow): Given a network graph 
𝐺 = (𝑉, 𝐸) with special source 𝑠 and sink 𝑡, find the 
maximum value of an 𝑠 − 𝑡 flow in the graph. 

� Let  𝑚 = |𝐸|. We use 𝑚 variables, one for each edge. 
� For an edge (𝑢, 𝑣), we will use variable 𝑓𝑢𝑣 to denote the 

flow along the edge (𝑢, 𝑣).
� We construct the following LP given 𝐺.

� Maximize 
� Subject to,

� 𝑓𝑢𝑣 ≤ 𝑐(𝑢, 𝑣), for all (𝑢, 𝑣) in 𝐸.
� , for all 𝑢 in 𝑉 − {𝑠, 𝑡}.

� 𝑓𝑢𝑣 ≥ 0.
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Linear Programming: Applications
� Problem (Shortest 𝑠 − 𝑡 path): Given a weighted, directed 

graph 𝐺 = (𝑉, 𝐸). Find the length of the shortest path from 
vertex 𝑠 to vertex 𝑡.

� Let  𝑛 = |𝑉|. We use 𝑛 variables, one for each vertex. 
� For a vertex 𝑣, we will use variable 𝑑𝑣 to denote the length 

of the shortest path from vertex 𝑠 to vertex 𝑣.

� We construct the following LP given 𝐺.
� Maximize 𝑑𝑡, 
� subject to:

� For all edges 𝑢, 𝑣 ∈ 𝐸, 𝑑𝑣 ≤ 𝑑𝑢 + 𝑤(𝑢, 𝑣).
� 𝑑𝑠 = 0.
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Solving an LP



Linear Programming: Solving LP
� To be able to design an algorithm for solving LP problems, it 

will be useful if we define problems more precisely in some 
standard format.

� Standard form: A Linear Program is said to be standard 
form if the following holds: 
1. The linear objective function should be maximized. 
2. All variables have non-negativity constraint. 

i.e., for all 𝑖, 𝑥𝑖 ≥ 0.
3. All the remaining linear constraints are of the following form: 

∑./01 𝑎. ⋅ 𝑥. ≤ 𝑏.



Linear Programming: Solving LP
� Standard form: A Linear Program is said to be standard form if 

the following holds: 
1. The linear objective function should be maximized. 
2. All variables have non-negativity constraint. 

i.e., for all 𝑖, 𝑥𝑖 ≥ 0.
3. All the remaining linear constraints are of the following form: 

∑$%&' 𝑎$ ⋅ 𝑥$ ≤ 𝑏$

� Question: Is there a way to convert any LP problem to an 
equivalent standard form?

� Equivalence of LP’s: Two LP problems P1 and P2 are said to be 
equivalent if for any feasible solution for P1 with objective value 𝑧, 
there is a feasible solution of P2 with the same objective value and 
vice versa. 



Linear Programming: Solving LP
� Standard form: A Linear Program is said to be standard 

form if the following holds: 
1. The linear objective function should be maximized. 
2. All variables have non-negativity constraint. 

i.e., for all 𝑖, 𝑥𝑖 ≥ 0.
3. All the remaining linear constraints are of the following form: 

∑./01 𝑎. ⋅ 𝑥. ≤ 𝑏.

� A general LP problem might not be in standard for because it 
might have:
1. Equality constraints (=) rather than inequality (≤).
2. ≥ instead of ≤.
3. Variables without non-negativity constraints.
4. Minimization rather than maximization. 



Linear Programming: Solving LP
� A general LP problem might not be in standard form because 

it might have:
1. Equality constraints (=) rather than inequality (≤).

� Idea: 𝑎 = 𝑏 can be expresses as 𝑎 ≤ 𝑏 and 𝑎 ≥ 𝑏.

2. ≥ instead of ≤.
3. Variables without non-negativity constraints.
4. Minimization rather than maximization. 
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� A general LP problem might not be in standard form because 

it might have:
1. Equality constraints (=) rather than inequality (≤).

� Idea: 𝑎 = 𝑏 can be written as 𝑎 ≤ 𝑏 and 𝑎 ≥ 𝑏.

2. ≥ instead of ≤.
� Idea: 𝑎 ≥ 𝑏 can be written as −𝑎 ≤ −𝑏.

3. Variables without non-negativity constraints.
4. Minimization rather than maximization. 



Linear Programming: Solving LP
� A general LP problem might not be in standard form because 

it might have:
1. Equality constraints (=) rather than inequality (≤).

� Idea: 𝑎 = 𝑏 can be written as 𝑎 ≤ 𝑏 and 𝑎 ≥ 𝑏.

2. ≥ instead of ≤.
� Idea: 𝑎 ≥ 𝑏 can be written as −𝑎 ≤ −𝑏.

3. Variables without non-negativity constraints.
� Idea: Replace a variable 𝑥 (that has no non-negativity constraint) with 

(𝑥’ – 𝑥’’) everywhere and put 𝑥’ ≥ 0 and 𝑥’’ ≥ 0.

4. Minimization rather than maximization. 



Linear Programming: Solving LP
� A general LP problem might not be in standard form because 

it might have:
1. Equality constraints (=) rather than inequality (≤).

� Idea: 𝑎 = 𝑏 can be written as 𝑎 ≤ 𝑏 and 𝑎 ≥ 𝑏.

2. ≥ instead of ≤.
� Idea: 𝑎 ≥ 𝑏 can be written as −𝑎 ≤ −𝑏.

3. Variables without non-negativity constraints.
� Idea: Replace a variable 𝑥 (that has no non-negativity constraint) with 

(𝑥’ – 𝑥’’) everywhere and put 𝑥’ ≥ 0 and 𝑥’’ ≥ 0.

4. Minimization rather than maximization. 
� Idea: Replace “Minimize ∑𝑐𝑖 ⋅ 𝑥𝑖” with “Maximize ∑ −𝑐𝑖 ⋅ 𝑥𝑖”.
� In this case, equivalence of LP is in the sense that the objective values of LPs are 

negation of each other instead of being same. So, you can solve one to get a 
solution for the other.



Linear Programming: Solving LP
� Example:
�Minimize     −2𝑥1 + 3𝑥2
� subject to 
� 𝑥1 + 𝑥2 = 7
� 𝑥1 – 2𝑥2 ≤ 4
� 𝑥1 ≥ 0



Linear Programming: Solving LP
� Example: Minimize to Maximize

�Maximize    2𝑥1 − 3𝑥2
� subject to 
� 𝑥1 + 𝑥2 = 7
� 𝑥1 – 2𝑥2 ≤ 4
� 𝑥1 ≥ 0



Linear Programming: Solving LP
� Example: non-negativity constraint for 𝑥2
�Maximize    2𝑥1 – 3(𝑥2’ − 𝑥2’’)
� subject to 
� 𝑥1 + (𝑥2’ − 𝑥2’’) = 7
� 𝑥1 – 2(𝑥2’ − 𝑥2’’) ≤ 4
� 𝑥1 ≥ 0, 𝑥2’ ≥ 0, 𝑥2’’ ≥ 0



Linear Programming: Solving LP
� Example: non-negativity constraint for 𝑥2
�Maximize    2𝑥1 – 3𝑥2’ + 3𝑥2’’
� subject to 
� 𝑥1 + 𝑥2’ − 𝑥2’’ = 7
� 𝑥1 – 2𝑥2’ + 2𝑥2’’ ≤ 4
� 𝑥1 ≥ 0, 𝑥2’ ≥ 0, 𝑥2’’ ≥ 0



Linear Programming: Solving LP
� Example: renaming variables

�Maximize    2𝑥1 – 3𝑥2 + 3𝑥3
� subject to 
� 𝑥1 + 𝑥2 – 𝑥3 = 7
� 𝑥1 – 2𝑥2 + 2𝑥3 ≤ 4
� 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0



Linear Programming: Solving LP
� Example: Equality to inequality

�Maximize    2𝑥1 – 3𝑥2 + 3𝑥3
� subject to 
� 𝑥1 + 𝑥2 – 𝑥3 ≤ 7
�−𝑥1 − 𝑥2 + 𝑥3 ≤ −7
� 𝑥1 – 2𝑥2 + 2𝑥3 ≤ 4
� 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0



Linear Programming: Solving LP
� Standard form: A Linear Program is said to be standard 

form if the following holds: 
1. The linear objective function should be maximized. 
2. All variables have non-negativity constraint. 

i.e., for all 𝑖, 𝑥𝑖 ≥ 0.
3. All the remaining linear constraints are of the following form: 

∑./01 𝑎. ⋅ 𝑥. ≤ 𝑏..

� It will be useful to further convert an LP in standard for to an 
equivalent LP in Slack form.
� Slack form: For every inequality ∑. 𝑎.𝑥. ≤ 𝑏., we introduce a 

slack variable 𝑠. and replace∑. 𝑎.𝑥. ≤ 𝑏. with 
𝑠. = 𝑏. − ∑. 𝑎.𝑥. and 𝑠. ≥ 0.



Linear Programming: Solving LP
� Example:
�Maximize    2𝑥1 – 3𝑥2 + 3𝑥3
� subject to 
� 𝑥1 + 𝑥2 – 𝑥3 ≤ 7
�−𝑥1 − 𝑥2 + 𝑥3 ≤ −7
� 𝑥1 – 2𝑥2 + 2𝑥3 ≤ 4
� 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0



Linear Programming: Solving LP
� Example: Standard form to slack form.

� 𝑧 = 2𝑥1− 3𝑥2 + 3𝑥3
� 𝑥4 = 7 − 𝑥1 − 𝑥2 + 𝑥3
� 𝑥5 = −7 + 𝑥1 + 𝑥2 − 𝑥3
� 𝑥6 = 4 − 𝑥1 + 2𝑥2 − 2𝑥3
� 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0, 𝑥4 ≥ 0, 𝑥5 ≥ 0, 𝑥6 ≥ 0.

� The variables on the LHS are called basic variables and 
those on the RHS are called non-basic variables.

� Basic solution: Set all non-basic variables to 0 and 
compute the value of the basic variables. 



Linear Programming: Solving LP
� The variables on the LHS are called basic variables and 

those on the RHS are called non-basic variables.
� Basic solution: Set all non-basic variables to 0 and 

compute the value of the basic variables. 
� Simplex algorithm:

� Repeat: 
� Pivot: Rewrite the LP in slack form such that the objective value of the 

basic solution increases.



Linear Programming:
The Simplex Algorithm



Linear Programming: Solving LP
� Simplex algorithm:

� Repeat: 
� Pivot: Rewrite the LP in slack form such that the objective value of the 

basic solution increases.

� Example:
� 𝑧 = 3𝑥1 + 𝑥2 + 2𝑥3
� 𝑥4 = 30 – 𝑥1 – 𝑥2 – 3𝑥3
� 𝑥5 = 24 − 2𝑥1 – 2𝑥2 – 5𝑥3
� 𝑥6 = 36 – 4𝑥1 – 𝑥2 – 2𝑥3

� Use 𝑥1 = (9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2)



Linear Programming: Solving LP
� Simplex algorithm:

� Repeat: 
� Pivot: Rewrite the LP in slack form such that the objective value of the 

basic solution increases.

� Example:
� 𝑧 = 3(9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2) + 𝑥2 + 2𝑥3
� 𝑥4 = 30 – (9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2) – 𝑥2 – 3𝑥3
� 𝑥5 = 24 − 2 (9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2) – 2𝑥2 – 5𝑥3
� 𝑥1 = (9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2)



Linear Programming: Solving LP
� Simplex algorithm:

� Repeat: 
� Pivot: Rewrite the LP in slack form such that the objective value of the basic 

solution increases.

� Example:
� 𝑧 = 27 + 𝑥2/4 + 𝑥3/2 − 3𝑥6/4
� 𝑥4 = 21 – 3𝑥2/4 – 5𝑥3/2 + 𝑥6/4
� 𝑥5 = 6 – 3𝑥2/2 – 4𝑥3 + 𝑥6/2
� 𝑥1 = 9 – 𝑥2/4 – 𝑥3/2 – 𝑥6/4

� Now 𝑥2, 𝑥3, and 𝑥6 are the non-basic variables and 𝑥1, 𝑥4, and 𝑥5
are the basic variables. 

� The objective value of the basic solution is now 27.
� Claim: If the basic solution is feasible for the LP before pivoting, 

then the basic solution for the LP after pivoting is also feasible. 



Linear Programming: Solving LP
� Simplex algorithm:

� Repeat: 
� Pivot: Rewrite the LP in slack form such that the objective value of the 

basic solution increases.

� Example:
� 𝑧 = 27 + 𝑥2/4 + 𝑥3/2 − 3𝑥6/4
� 𝑥4 = 21 – 3𝑥2/4 – 5𝑥3/2 + 𝑥6/4
� 𝑥5 = 6 – 3𝑥2/2 – 4𝑥3 + 𝑥6/2
� 𝑥1 = 9 – 𝑥2/4 – 𝑥3/2 – 𝑥6/4

� Use 𝑥3 = 3/2 − 3𝑥2/8 – 𝑥5/4 + 𝑥6/8



Linear Programming: Solving LP
� Simplex algorithm:

� Repeat: 
� Pivot: Rewrite the LP in slack form such that the objective value of the 

basic solution increases.

� Example:
� 𝑧 = 111/4 + 𝑥2/16 − 𝑥5/8 − 11𝑥6/16
� 𝑥4 = 69/4 + 3𝑥2/16 + 5𝑥5/8 − 𝑥6/16
� 𝑥1 = 33/4 – 𝑥2/16 + 𝑥5/8 − 5𝑥6/16
� 𝑥3 = 3/2 – 3𝑥2/8 – 𝑥5/4 + 𝑥6/8

� Now 𝑥2, 𝑥5, and 𝑥6 are the non-basic variables and 𝑥1, 𝑥3, 
and 𝑥4 are the basic variables. 

� The objective value of the basic solution is now 111/4.



Linear Programming: Solving LP
� Simplex algorithm:

� Repeat: 
� Pivot: Rewrite the LP in slack form such that the objective value of the 

basic solution increases.

� Example:
� 𝑧 = 111/4 + 𝑥2/16 − 𝑥5/8 − 11𝑥6/16
� 𝑥4 = 69/4 + 3𝑥2/16 + 5𝑥5/8 − 𝑥6/16
� 𝑥1 = 33/4 – 𝑥2/16 + 𝑥5/8 − 5𝑥6/16
� 𝑥3 = 3/2 – 3𝑥2/8 – 𝑥5/4 + 𝑥6/8

� Use 𝑥2 = 4 – 8𝑥3/3 – 2𝑥5/3 + 𝑥6/3



Linear Programming: Solving LP
� Simplex algorithm:

� Repeat: 
� Pivot: Rewrite the LP in slack form such that the objective value of the 

basic solution increases.

� Example:
� 𝑧 = 28 − 𝑥3/6 − 𝑥5/6 − 2𝑥6/3
� 𝑥1 = 8 + 𝑥3/6 + 𝑥5/6 − 𝑥6/3
� 𝑥2 = 4 – 8𝑥3/3 − 2𝑥5/3 + 𝑥6/3
� 𝑥4 = 18 – 𝑥3/2 + 𝑥5/2

� Now the basic solution is the optimal solution. 

� The optimal objective value for the initial LP is 28 and the 
value of the variables are 𝑥1 = 8, 𝑥2 = 4, and 𝑥3 = 0.



Linear Programming: Solving LP
� Simplex algorithm:

� Repeat: 
� Pivot: Rewrite the LP in slack form such that the objective value of the 

basic solution increases.

� We looked at a contrived example devoid of any 
complications. Here are some of the complications that could 
arise:
1. What if the initial basic solution is not a feasible solution?
2. What if the LP is unbounded? How and where do we detect 

this?
3. What if after a pivoting step the objective value of the basic 

solution does not increase? What is the running time of the 
Simplex algorithm?



Linear Programming: Solving LP
� Complications:

1. What if the initial basic solution is not a feasible solution?
� We will determine this in a preprocessing step. If the LP has a feasible 

solution, then we will rewrite it in a form where the basic solution is 
feasible.

2. What if the LP is unbounded? How and where do we detect 
this?

� We will check this while pivoting.

3. What if after a pivoting step the objective value of the basic 
solution does not increase? What is the running time of the 
Simplex algorithm?

� This is indeed a problem with Simplex. The algorithm might cycle 
without increasing the objective value. Simplex is actually not a 
polynomial time algorithm but it is still used in practice because it 
works very well on real world instances.



Linear Programming: Solving LP
� (Complication 2) What if the LP is unbounded? How and where 

do we detect this?

� Consider the following general slack LP that we obtain while 
running Simplex: 

� 𝑧 = 𝑣 + 𝑐1𝑥1 + 𝑐2𝑥2 + … + 𝑐𝑛𝑥𝑛
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛
� Claim: Suppose 𝑐𝑖 > 0 and 𝑎1𝑖, 𝑎2𝑖, 𝑎3𝑖, … , 𝑎𝑚𝑖 ≤ 0. 

Then the LP is unbounded.



Linear Programming: Solving LP
� (Complication 3) What if after a pivoting step the objective value 

of the basic solution does not increase? What is the running time 
of the Simplex algorithm?

� Consider the following example:

� 𝑧 = 8 + 𝑥3 – 𝑥4
� 𝑥1 = 8 − 𝑥2 − 𝑥4
� 𝑥5 = 𝑥2 – 𝑥3
� We have to pivot using 𝑥3 = 𝑥2 − 𝑥5 but that gives us
� 𝑧 = 8 + 𝑥2 – 𝑥4 – 𝑥5
� 𝑥1 = 8 − 𝑥2 − 𝑥4
� 𝑥3 = 𝑥2 – 𝑥5
� The objective value of the basic solution does not change.



Linear Programming: Solving LP
� (Complication 3) What if after a pivoting step the objective value 

of the basic solution does not increase? What is the running time 
of the Simplex algorithm?

� So, the Simplex may cycle between slack forms without 
increasing the objective value of the basic solution. 

� Claim: Each slack form is uniquely determined by the set 
of basic and non-basic variables. 

� Question:What is the upper bound on the number of slack 
forms that the Simplex cycles without increasing the 
objective value of the basic solution?



Linear Programming: Solving LP
� (Complication 3) What if after a pivoting step the objective value 

of the basic solution does not increase? What is the running time 
of the Simplex algorithm?

� So, the Simplex may cycle between slack forms without 
increasing the objective value of the basic solution. 

� Claim: Each slack form is uniquely determined by the set 
of basic and non-basic variables. 

� Question:What is the upper bound on the number of slack 
forms that the Simplex cycles without increasing the 
objective value of the basic solution?

� . This is the upper bound on the number of different 
slack forms.

m
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Linear Programming: Solving LP
� (Complication 3) What if after a pivoting step the objective value 

of the basic solution does not increase? What is the running time 
of the Simplex algorithm?

� So, the Simplex may cycle between slack forms without 
increasing the objective value of the basic solution. 

� Claim: Each slack form is uniquely determined by the set 
of basic and non-basic variables. 

� Claim: If the Simplex fails to terminate in             steps, 
then it cycles.

� There is a way (Bland’s rule) to choose the pivoting variables 
so that Simplex always terminates.

m
mn C+



Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible 

solution?

� We construct the following LP, 𝐿’ in slack form:

� 𝑧 = −𝑥0
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛 + 𝑥0
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛 + 𝑥0
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛 + 𝑥0
� Claim: The given LP has a feasible solution if and only if the 

optimal objective value of 𝐿’ is 0.

� So, all we need to do is to solve 𝐿’. This seems to bring us back 
to the original problem. However, we see that 𝐿’ is a simple LP.



Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible 

solution?

� We construct the following LP, 𝐿’ in slack form:

� 𝑧 = −𝑥0
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛 + 𝑥0
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛 + 𝑥0
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛 + 𝑥0
� Claim: The given LP has a feasible solution if and only if the 

optimal objective value of 𝐿’ is 0.

� Claim: 𝐿’ is feasible.
� The basic solution might not be a feasible solution since some 

𝑏𝑖 < 0.



Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible 

solution?

� 𝐿’:
� 𝑧 = −𝑥0
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛 + 𝑥0
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛 + 𝑥0
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛 + 𝑥0
� The basic solution might not be a feasible solution since some 

𝑏𝑖 < 0.

� Let 𝑏𝑖 be the smallest among 𝑏1, … , 𝑏4. We will pivot using 
x125 = 𝑏5 – 𝑎50𝑥1 − … + 𝑥0



Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible 

solution?

� 𝐿’:
� 𝑧 = −𝑥0
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛 + 𝑥0
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛 + 𝑥0
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛 + 𝑥0
� Let 𝑏𝑖 be the smallest among 𝑏1, … , 𝑏4. We will pivot using 

𝑥125 = 𝑏5 – 𝑎50𝑥1 − … + 𝑥0
� Claim: The basic solution of the LP obtained after the above 

pivoting is a feasible solution.



Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible 

solution?

� Pre-processing algorithm:
� Given 𝐿, check if all 𝑏𝑖’s are positive. In that case return 𝐿. 

� Consider 𝐿’. Perform the pivoting using the equation with smallest 𝑏𝑖 to 
obtain 𝐿’’.

� Solve 𝐿’’ using Simplex and find the optimal objective value 𝑂𝑝𝑡.
� If (𝑂𝑝𝑡 ≠ 0), then output “LP is infeasible”.

� Otherwise, let 𝐿𝑆 be the LP obtained at the end of the simplex. Do the 
following: 

� If 𝑥0 is a basic variable in 𝐿𝑆, then perform a pivoting step to obtain 
𝐿𝑆’.

� Remove all instances of 𝑥0 and rewrite the objective function of 𝐿 in 
terms of non-basic variables of 𝐿𝑆’.



Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible 

solution?
� Pre-processing algorithm: Example
� 𝐿:

� 𝑧 = 2𝑥1 – 𝑥2
� 𝑥3 = 2 – 2𝑥1 + 𝑥2
� 𝑥4 = −4 – 𝑥1 + 5𝑥2

� 𝐿’:
� 𝑧 = − 𝑥0
� 𝑥3 = 2 – 2𝑥1 + 𝑥2+ 𝑥0
� 𝑥4 = −4 – 𝑥1 + 5𝑥2 + 𝑥0

� 𝐿’’: After Pivot using (𝑥4 = …)
� 𝑧 = −4 – 𝑥1 + 5𝑥2 – 𝑥"
� 𝑥3 = 6 – 𝑥1 − 4𝑥2+ 𝑥4
� 𝑥0 = 4 + 𝑥1 − 5𝑥2 + 𝑥4



Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible 

solution?
� Pre-processing algorithm: Example
� 𝐿:

� 𝑧 = 2𝑥1 – 𝑥2
� 𝑥3 = 2 – 2𝑥1 + 𝑥2
� 𝑥4 = −4 – 𝑥1 + 5𝑥2

� 𝐿𝑆:
� 𝑧 = −𝑥0
� 𝑥2 = 4/5 – 𝑥0/5 + 𝑥1/5 + 𝑥4/5
� 𝑥3 = 14/5 + 4𝑥0/5 − 9𝑥1/5 + 𝑥4/5

� 𝐿𝑆:
� 𝑧 = 2𝑥1 – 𝑥2 = 2𝑥1 – (4/5 + 𝑥1/5 + 𝑥4/5) = −4/5 +

9𝑥1/5 – 𝑥4/5
� 𝑥2 = 4/5 + 𝑥1/5 + 𝑥4/5
� 𝑥3 = 14/5 − 9𝑥1/5 + 𝑥4/5
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