
Linear Programming

Linear Programming: Introduction
� A large class of optimization problems in which the

constraints and optimization criterion are linear functions.
� A Linear Programming(LP) problem consists of assigning real

values to variables such that these variables
1. (Linear constraints) satisfy a set of linear equalities or

inequalities, and
2. (Objective function) maximize or minimize a given linear

objective function.

� Example: A cottage industry makes two kinds of products 𝑃1
and 𝑃2. The daily demand for 𝑃1 is 100 and the daily
demand for 𝑃2 is 200. The total amount of items that the
industry can produce in a day is 250. The industry makes
profit of 𝑅𝑠. 1 per unit item of type 𝑃1 and 𝑅𝑠. 5 per unit
item of type 𝑃2. How many items of 𝑃1 and 𝑃2 should the
industry produce to make maximum amount of profit?

� Let 𝑥1 be a variable denoting the amount of 𝑃1 items
produced by the industry and 𝑥2 the mount of 𝑃2 items.

� The goal is to maximize the linear objective function:
1 ⋅ 𝑥1 + 5 ⋅ 𝑥2

under the linear constraints:
𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200, 𝑥1+ 𝑥2 ≤ 250

Linear Programming: Introduction

� Problem(LP): Maximize the linear objective function:
1 ⋅ 𝑥1 + 5 ⋅ 𝑥2

under the linear constraints:
𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200, 𝑥1+ 𝑥2 ≤ 250

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 5𝑥2 = 1050

𝑥1+ 5𝑥2 = 100

� Given a Linear Programming problem, we will use the
following definitions:
� Feasible solution: An assignment to the variables that satisfy all

the linear constraints.
� Example: 𝑥1 = 50, 𝑥2 = 100 is a feasible solution.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

� Question: Does a Linear Programming problem always have
a feasible solution?

Linear Programming: Introduction

� Question: Does a Linear Programming problem always have
a feasible solution?
� Not necessarily. Suppose the linear constraints are

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200,
𝑥1+ 𝑥2 ≤ 250, 𝑥1+ 10 ⋅ 𝑥2 ≥ 3000

Linear Programming: Introduction

� Question: Does a Linear Programming problem always have
a feasible solution?
� Not necessarily. Suppose the linear constraints are

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200,
𝑥1+ 𝑥2 ≤ 250, 𝑥1+ 10 ⋅ 𝑥2 ≥ 3000

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 10 ⋅ 𝑥2 = 3000

� Infeasible LP: A linear program is said to be infeasible if there
are no feasible solutions.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 10 ⋅ 𝑥2 = 3000

� Unbounded LP: A linear program is said to be unbounded if
it is possible to achieve arbitrarily high values of the objective
function.
� Example: Maximize (𝑥1+ 5 ⋅ 𝑥2)

subject to 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥2 ≤ 200.

Linear Programming: Introduction

𝑥1

𝑥2200

� Claim: For any linear program that is not infeasible and
unbounded, the objective function value is maximized at one
of the vertices of the feasible region.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 5𝑥2 = 1050

𝑥1+ 5𝑥2 = 100

� Naïve idea for solving an LP:
� Try all possible vertex of the feasible region and return the one

that maximizes the objective function.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 5𝑥2 = 1050

𝑥1+ 5𝑥2 = 100

� Naïve idea for solving an LP:
� Try all possible vertex of the feasible region and return the one

that maximizes the objective function.
� Suppose the LP has 𝑛 variables and 𝑚 = 𝑂(𝑛) constraints.

How many vertices can the feasible region have in worst case?

Linear Programming: Introduction

� Naïve idea for solving an LP:
� Try all possible vertex of the feasible region and return the one

that maximizes the objective function.
� Suppose the LP has 𝑛 variables and 𝑚 = 𝑂(𝑛) constraints.

How many vertices can the feasible region have in worst case?
� Exponentially many! Consider the LP: maximize (𝑥1 + 𝑥2 +⋯+ 𝑥𝑛)

subject to 0 ≤ 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ 1.

Linear Programming: Introduction

𝑥1

𝑥2

𝑥3

� Claim: There is an algorithm that solves any linear
programming problem instance that runs in polynomial time.

Linear Programming: Introduction

� Claim: There is an algorithm that solves any linear
programming problem instance that runs in polynomial time.

� The optimal solution may assign real numbers to some
variables even though all of the constraints of objective
function involve integers.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250 𝑥1+ 10 ⋅ 𝑥2 = 2000

𝑥1 = 500/9,
𝑥2 = 1750/9

� Claim: There is an algorithm that solves any linear programming
problem instance that runs in polynomial time.

� The optimal solution may assign real numbers to some variables
even though all of the constraints of objective function involve
integers.

� Suppose in addition to the linear constraint, we add another
constraint that all the variables should be integers. Such linear
programs are called Integer Linear Programs (ILP).

� Integer Linear Program(ILP): Consists of
� Linear objective function
� Linear constraints.
� All variables should be integers.

Decision-ILP: Given the above and an integer 𝑘, determine if there is
an integer assignment to the variables such that the objective function
value is at least 𝑘.

Linear Programming: Introduction

� How hard is Decision-ILP?

Linear Programming: Introduction

� How hard is Decision-ILP?

� Claim: Decision-ILP is NP-complete.
� Proof:

� Claim 1: Decision-ILP is in NP.

� Claim 2: 3-SAT ≤! Decision-ILP

Linear Programming: Introduction

� How hard is Decision-ILP?

� Claim: Decision-ILP is NP-complete.
� Proof:

� Claim 1: Decision-ILP is in NP.

� Claim 2: 3-SAT ≤! Decision-ILP
� Proof idea: Given a 3-SAT formula, we construct an instance of

Decision-ILP.
For each clause (e.g., (𝑥1 ∨ 𝑥2’ ∨ 𝑥3)) we create a linear constraint
(e.g., 𝑥1 + 1 − 𝑥2 + 𝑥3 ≥ 1). We further consider constraints
0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 and that all variables are integers.

Linear Programming: Introduction

� How hard is Decision-ILP?
� Claim: Decision-ILP is NP-complete.

� Proof:
� Claim 1: Decision-ILP is in NP.
� Claim 2: 3-SAT ≤! Decision-ILP

� Proof idea: Given a 3-SAT formula, we construct an instance of Decision-
ILP.
For each clause (e.g., (𝑥1 ∨ 𝑥2’ ∨ 𝑥3)) we create a linear constraint
(e.g., 𝑥1 + 1 − 𝑥2 + 𝑥3 ≥ 1). We further consider constraints
0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 and that all variables are integers.

� Formulating problems as an ILP is a standard way of solving many
combinatorial problems.

� Example: Maximum Independent set.
� Consider a 0 − 1 variable for each vertex, 1 denoting inclusion. For

each edge (𝑥, 𝑦), there is a constraint that 𝑥 + 𝑦 ≤ 1.

Linear Programming: Introduction

Linear Programming
Solving problems by formulating as Linear Programs

Linear Programming: Applications
� We saw how some combinatorial problems can be

formulated as an Integer Linear Programming (ILP)
problem.

� Unfortunately, ILP is hard.
� A number of problems can be formulated as a Linear

Programming problem and we know there is a polynomial
time algorithm for LP.

� Some interesting applications:
� Shortest 𝑠 − 𝑡 path in a directed graph with non-negative

weights.
� Maximum flow in a network graph.

Linear Programming: Applications
� Problem (Maximum 𝑠 − 𝑡 flow): Given a network graph
𝐺 = (𝑉, 𝐸) with special source 𝑠 and sink 𝑡, find the
maximum value of an 𝑠 − 𝑡 flow in the graph.

� Let 𝑚 = |𝐸|. We use 𝑚 variables, one for each edge.
� For an edge (𝑢, 𝑣), we will use variable 𝑓𝑢𝑣 to denote the

flow along the edge (𝑢, 𝑣).
� We construct the following LP given 𝐺.

� Maximize
� Subject to,

� 𝑓𝑢𝑣 ≤ 𝑐(𝑢, 𝑣), for all (𝑢, 𝑣) in 𝐸.
� , for all 𝑢 in 𝑉 − {𝑠, 𝑡}.

� 𝑓𝑢𝑣 ≥ 0.

å
ÎEvs

svf
),(

åå
ÎÎ

=
Evu
uv

Euv
vu ff

),(),(

Linear Programming: Applications
� Problem (Shortest 𝑠 − 𝑡 path): Given a weighted, directed

graph 𝐺 = (𝑉, 𝐸). Find the length of the shortest path from
vertex 𝑠 to vertex 𝑡.

� Let 𝑛 = |𝑉|. We use 𝑛 variables, one for each vertex.
� For a vertex 𝑣, we will use variable 𝑑𝑣 to denote the length

of the shortest path from vertex 𝑠 to vertex 𝑣.

� We construct the following LP given 𝐺.
� Maximize 𝑑𝑡,
� subject to:

� For all edges 𝑢, 𝑣 ∈ 𝐸, 𝑑𝑣 ≤ 𝑑𝑢 + 𝑤(𝑢, 𝑣).
� 𝑑𝑠 = 0.

Linear Programming
Solving an LP

Linear Programming: Solving LP
� To be able to design an algorithm for solving LP problems, it

will be useful if we define problems more precisely in some
standard format.

� Standard form: A Linear Program is said to be standard
form if the following holds:
1. The linear objective function should be maximized.
2. All variables have non-negativity constraint.

i.e., for all 𝑖, 𝑥𝑖 ≥ 0.
3. All the remaining linear constraints are of the following form:

∑./01 𝑎. ⋅ 𝑥. ≤ 𝑏.

Linear Programming: Solving LP
� Standard form: A Linear Program is said to be standard form if

the following holds:
1. The linear objective function should be maximized.
2. All variables have non-negativity constraint.

i.e., for all 𝑖, 𝑥𝑖 ≥ 0.
3. All the remaining linear constraints are of the following form:

∑$%&' 𝑎$ ⋅ 𝑥$ ≤ 𝑏$

� Question: Is there a way to convert any LP problem to an
equivalent standard form?

� Equivalence of LP’s: Two LP problems P1 and P2 are said to be
equivalent if for any feasible solution for P1 with objective value 𝑧,
there is a feasible solution of P2 with the same objective value and
vice versa.

Linear Programming: Solving LP
� Standard form: A Linear Program is said to be standard

form if the following holds:
1. The linear objective function should be maximized.
2. All variables have non-negativity constraint.

i.e., for all 𝑖, 𝑥𝑖 ≥ 0.
3. All the remaining linear constraints are of the following form:

∑./01 𝑎. ⋅ 𝑥. ≤ 𝑏.

� A general LP problem might not be in standard for because it
might have:
1. Equality constraints (=) rather than inequality (≤).
2. ≥ instead of ≤.
3. Variables without non-negativity constraints.
4. Minimization rather than maximization.

Linear Programming: Solving LP
� A general LP problem might not be in standard form because

it might have:
1. Equality constraints (=) rather than inequality (≤).

� Idea: 𝑎 = 𝑏 can be expresses as 𝑎 ≤ 𝑏 and 𝑎 ≥ 𝑏.

2. ≥ instead of ≤.
3. Variables without non-negativity constraints.
4. Minimization rather than maximization.

Linear Programming: Solving LP
� A general LP problem might not be in standard form because

it might have:
1. Equality constraints (=) rather than inequality (≤).

� Idea: 𝑎 = 𝑏 can be written as 𝑎 ≤ 𝑏 and 𝑎 ≥ 𝑏.

2. ≥ instead of ≤.
� Idea: 𝑎 ≥ 𝑏 can be written as −𝑎 ≤ −𝑏.

3. Variables without non-negativity constraints.
4. Minimization rather than maximization.

Linear Programming: Solving LP
� A general LP problem might not be in standard form because

it might have:
1. Equality constraints (=) rather than inequality (≤).

� Idea: 𝑎 = 𝑏 can be written as 𝑎 ≤ 𝑏 and 𝑎 ≥ 𝑏.

2. ≥ instead of ≤.
� Idea: 𝑎 ≥ 𝑏 can be written as −𝑎 ≤ −𝑏.

3. Variables without non-negativity constraints.
� Idea: Replace a variable 𝑥 (that has no non-negativity constraint) with

(𝑥’ – 𝑥’’) everywhere and put 𝑥’ ≥ 0 and 𝑥’’ ≥ 0.

4. Minimization rather than maximization.

Linear Programming: Solving LP
� A general LP problem might not be in standard form because

it might have:
1. Equality constraints (=) rather than inequality (≤).

� Idea: 𝑎 = 𝑏 can be written as 𝑎 ≤ 𝑏 and 𝑎 ≥ 𝑏.

2. ≥ instead of ≤.
� Idea: 𝑎 ≥ 𝑏 can be written as −𝑎 ≤ −𝑏.

3. Variables without non-negativity constraints.
� Idea: Replace a variable 𝑥 (that has no non-negativity constraint) with

(𝑥’ – 𝑥’’) everywhere and put 𝑥’ ≥ 0 and 𝑥’’ ≥ 0.

4. Minimization rather than maximization.
� Idea: Replace “Minimize ∑𝑐𝑖 ⋅ 𝑥𝑖” with “Maximize ∑ −𝑐𝑖 ⋅ 𝑥𝑖”.
� In this case, equivalence of LP is in the sense that the objective values of LPs are

negation of each other instead of being same. So, you can solve one to get a
solution for the other.

Linear Programming: Solving LP
� Example:
�Minimize −2𝑥1 + 3𝑥2
� subject to
� 𝑥1 + 𝑥2 = 7
� 𝑥1 – 2𝑥2 ≤ 4
� 𝑥1 ≥ 0

Linear Programming: Solving LP
� Example: Minimize to Maximize

�Maximize 2𝑥1 − 3𝑥2
� subject to
� 𝑥1 + 𝑥2 = 7
� 𝑥1 – 2𝑥2 ≤ 4
� 𝑥1 ≥ 0

Linear Programming: Solving LP
� Example: non-negativity constraint for 𝑥2
�Maximize 2𝑥1 – 3(𝑥2’ − 𝑥2’’)
� subject to
� 𝑥1 + (𝑥2’ − 𝑥2’’) = 7
� 𝑥1 – 2(𝑥2’ − 𝑥2’’) ≤ 4
� 𝑥1 ≥ 0, 𝑥2’ ≥ 0, 𝑥2’’ ≥ 0

Linear Programming: Solving LP
� Example: non-negativity constraint for 𝑥2
�Maximize 2𝑥1 – 3𝑥2’ + 3𝑥2’’
� subject to
� 𝑥1 + 𝑥2’ − 𝑥2’’ = 7
� 𝑥1 – 2𝑥2’ + 2𝑥2’’ ≤ 4
� 𝑥1 ≥ 0, 𝑥2’ ≥ 0, 𝑥2’’ ≥ 0

Linear Programming: Solving LP
� Example: renaming variables

�Maximize 2𝑥1 – 3𝑥2 + 3𝑥3
� subject to
� 𝑥1 + 𝑥2 – 𝑥3 = 7
� 𝑥1 – 2𝑥2 + 2𝑥3 ≤ 4
� 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0

Linear Programming: Solving LP
� Example: Equality to inequality

�Maximize 2𝑥1 – 3𝑥2 + 3𝑥3
� subject to
� 𝑥1 + 𝑥2 – 𝑥3 ≤ 7
�−𝑥1 − 𝑥2 + 𝑥3 ≤ −7
� 𝑥1 – 2𝑥2 + 2𝑥3 ≤ 4
� 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0

Linear Programming: Solving LP
� Standard form: A Linear Program is said to be standard

form if the following holds:
1. The linear objective function should be maximized.
2. All variables have non-negativity constraint.

i.e., for all 𝑖, 𝑥𝑖 ≥ 0.
3. All the remaining linear constraints are of the following form:

∑./01 𝑎. ⋅ 𝑥. ≤ 𝑏..

� It will be useful to further convert an LP in standard for to an
equivalent LP in Slack form.
� Slack form: For every inequality ∑. 𝑎.𝑥. ≤ 𝑏., we introduce a

slack variable 𝑠. and replace∑. 𝑎.𝑥. ≤ 𝑏. with
𝑠. = 𝑏. − ∑. 𝑎.𝑥. and 𝑠. ≥ 0.

Linear Programming: Solving LP
� Example:
�Maximize 2𝑥1 – 3𝑥2 + 3𝑥3
� subject to
� 𝑥1 + 𝑥2 – 𝑥3 ≤ 7
�−𝑥1 − 𝑥2 + 𝑥3 ≤ −7
� 𝑥1 – 2𝑥2 + 2𝑥3 ≤ 4
� 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0

Linear Programming: Solving LP
� Example: Standard form to slack form.

� 𝑧 = 2𝑥1− 3𝑥2 + 3𝑥3
� 𝑥4 = 7 − 𝑥1 − 𝑥2 + 𝑥3
� 𝑥5 = −7 + 𝑥1 + 𝑥2 − 𝑥3
� 𝑥6 = 4 − 𝑥1 + 2𝑥2 − 2𝑥3
� 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0, 𝑥4 ≥ 0, 𝑥5 ≥ 0, 𝑥6 ≥ 0.

� The variables on the LHS are called basic variables and
those on the RHS are called non-basic variables.

� Basic solution: Set all non-basic variables to 0 and
compute the value of the basic variables.

Linear Programming: Solving LP
� The variables on the LHS are called basic variables and

those on the RHS are called non-basic variables.
� Basic solution: Set all non-basic variables to 0 and

compute the value of the basic variables.
� Simplex algorithm:

� Repeat:
� Pivot: Rewrite the LP in slack form such that the objective value of the

basic solution increases.

Linear Programming:
The Simplex Algorithm

Linear Programming: Solving LP
� Simplex algorithm:

� Repeat:
� Pivot: Rewrite the LP in slack form such that the objective value of the

basic solution increases.

� Example:
� 𝑧 = 3𝑥1 + 𝑥2 + 2𝑥3
� 𝑥4 = 30 – 𝑥1 – 𝑥2 – 3𝑥3
� 𝑥5 = 24 − 2𝑥1 – 2𝑥2 – 5𝑥3
� 𝑥6 = 36 – 4𝑥1 – 𝑥2 – 2𝑥3

� Use 𝑥1 = (9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2)

Linear Programming: Solving LP
� Simplex algorithm:

� Repeat:
� Pivot: Rewrite the LP in slack form such that the objective value of the

basic solution increases.

� Example:
� 𝑧 = 3(9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2) + 𝑥2 + 2𝑥3
� 𝑥4 = 30 – (9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2) – 𝑥2 – 3𝑥3
� 𝑥5 = 24 − 2 (9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2) – 2𝑥2 – 5𝑥3
� 𝑥1 = (9 – 𝑥6/4 – 𝑥2/4 – 𝑥3/2)

Linear Programming: Solving LP
� Simplex algorithm:

� Repeat:
� Pivot: Rewrite the LP in slack form such that the objective value of the basic

solution increases.

� Example:
� 𝑧 = 27 + 𝑥2/4 + 𝑥3/2 − 3𝑥6/4
� 𝑥4 = 21 – 3𝑥2/4 – 5𝑥3/2 + 𝑥6/4
� 𝑥5 = 6 – 3𝑥2/2 – 4𝑥3 + 𝑥6/2
� 𝑥1 = 9 – 𝑥2/4 – 𝑥3/2 – 𝑥6/4

� Now 𝑥2, 𝑥3, and 𝑥6 are the non-basic variables and 𝑥1, 𝑥4, and 𝑥5
are the basic variables.

� The objective value of the basic solution is now 27.
� Claim: If the basic solution is feasible for the LP before pivoting,

then the basic solution for the LP after pivoting is also feasible.

Linear Programming: Solving LP
� Simplex algorithm:

� Repeat:
� Pivot: Rewrite the LP in slack form such that the objective value of the

basic solution increases.

� Example:
� 𝑧 = 27 + 𝑥2/4 + 𝑥3/2 − 3𝑥6/4
� 𝑥4 = 21 – 3𝑥2/4 – 5𝑥3/2 + 𝑥6/4
� 𝑥5 = 6 – 3𝑥2/2 – 4𝑥3 + 𝑥6/2
� 𝑥1 = 9 – 𝑥2/4 – 𝑥3/2 – 𝑥6/4

� Use 𝑥3 = 3/2 − 3𝑥2/8 – 𝑥5/4 + 𝑥6/8

Linear Programming: Solving LP
� Simplex algorithm:

� Repeat:
� Pivot: Rewrite the LP in slack form such that the objective value of the

basic solution increases.

� Example:
� 𝑧 = 111/4 + 𝑥2/16 − 𝑥5/8 − 11𝑥6/16
� 𝑥4 = 69/4 + 3𝑥2/16 + 5𝑥5/8 − 𝑥6/16
� 𝑥1 = 33/4 – 𝑥2/16 + 𝑥5/8 − 5𝑥6/16
� 𝑥3 = 3/2 – 3𝑥2/8 – 𝑥5/4 + 𝑥6/8

� Now 𝑥2, 𝑥5, and 𝑥6 are the non-basic variables and 𝑥1, 𝑥3,
and 𝑥4 are the basic variables.

� The objective value of the basic solution is now 111/4.

Linear Programming: Solving LP
� Simplex algorithm:

� Repeat:
� Pivot: Rewrite the LP in slack form such that the objective value of the

basic solution increases.

� Example:
� 𝑧 = 111/4 + 𝑥2/16 − 𝑥5/8 − 11𝑥6/16
� 𝑥4 = 69/4 + 3𝑥2/16 + 5𝑥5/8 − 𝑥6/16
� 𝑥1 = 33/4 – 𝑥2/16 + 𝑥5/8 − 5𝑥6/16
� 𝑥3 = 3/2 – 3𝑥2/8 – 𝑥5/4 + 𝑥6/8

� Use 𝑥2 = 4 – 8𝑥3/3 – 2𝑥5/3 + 𝑥6/3

Linear Programming: Solving LP
� Simplex algorithm:

� Repeat:
� Pivot: Rewrite the LP in slack form such that the objective value of the

basic solution increases.

� Example:
� 𝑧 = 28 − 𝑥3/6 − 𝑥5/6 − 2𝑥6/3
� 𝑥1 = 8 + 𝑥3/6 + 𝑥5/6 − 𝑥6/3
� 𝑥2 = 4 – 8𝑥3/3 − 2𝑥5/3 + 𝑥6/3
� 𝑥4 = 18 – 𝑥3/2 + 𝑥5/2

� Now the basic solution is the optimal solution.

� The optimal objective value for the initial LP is 28 and the
value of the variables are 𝑥1 = 8, 𝑥2 = 4, and 𝑥3 = 0.

Linear Programming: Solving LP
� Simplex algorithm:

� Repeat:
� Pivot: Rewrite the LP in slack form such that the objective value of the

basic solution increases.

� We looked at a contrived example devoid of any
complications. Here are some of the complications that could
arise:
1. What if the initial basic solution is not a feasible solution?
2. What if the LP is unbounded? How and where do we detect

this?
3. What if after a pivoting step the objective value of the basic

solution does not increase? What is the running time of the
Simplex algorithm?

Linear Programming: Solving LP
� Complications:

1. What if the initial basic solution is not a feasible solution?
� We will determine this in a preprocessing step. If the LP has a feasible

solution, then we will rewrite it in a form where the basic solution is
feasible.

2. What if the LP is unbounded? How and where do we detect
this?

� We will check this while pivoting.

3. What if after a pivoting step the objective value of the basic
solution does not increase? What is the running time of the
Simplex algorithm?

� This is indeed a problem with Simplex. The algorithm might cycle
without increasing the objective value. Simplex is actually not a
polynomial time algorithm but it is still used in practice because it
works very well on real world instances.

Linear Programming: Solving LP
� (Complication 2) What if the LP is unbounded? How and where

do we detect this?

� Consider the following general slack LP that we obtain while
running Simplex:

� 𝑧 = 𝑣 + 𝑐1𝑥1 + 𝑐2𝑥2 + … + 𝑐𝑛𝑥𝑛
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛
� Claim: Suppose 𝑐𝑖 > 0 and 𝑎1𝑖, 𝑎2𝑖, 𝑎3𝑖, … , 𝑎𝑚𝑖 ≤ 0.

Then the LP is unbounded.

Linear Programming: Solving LP
� (Complication 3) What if after a pivoting step the objective value

of the basic solution does not increase? What is the running time
of the Simplex algorithm?

� Consider the following example:

� 𝑧 = 8 + 𝑥3 – 𝑥4
� 𝑥1 = 8 − 𝑥2 − 𝑥4
� 𝑥5 = 𝑥2 – 𝑥3
� We have to pivot using 𝑥3 = 𝑥2 − 𝑥5 but that gives us
� 𝑧 = 8 + 𝑥2 – 𝑥4 – 𝑥5
� 𝑥1 = 8 − 𝑥2 − 𝑥4
� 𝑥3 = 𝑥2 – 𝑥5
� The objective value of the basic solution does not change.

Linear Programming: Solving LP
� (Complication 3) What if after a pivoting step the objective value

of the basic solution does not increase? What is the running time
of the Simplex algorithm?

� So, the Simplex may cycle between slack forms without
increasing the objective value of the basic solution.

� Claim: Each slack form is uniquely determined by the set
of basic and non-basic variables.

� Question:What is the upper bound on the number of slack
forms that the Simplex cycles without increasing the
objective value of the basic solution?

Linear Programming: Solving LP
� (Complication 3) What if after a pivoting step the objective value

of the basic solution does not increase? What is the running time
of the Simplex algorithm?

� So, the Simplex may cycle between slack forms without
increasing the objective value of the basic solution.

� Claim: Each slack form is uniquely determined by the set
of basic and non-basic variables.

� Question:What is the upper bound on the number of slack
forms that the Simplex cycles without increasing the
objective value of the basic solution?

� . This is the upper bound on the number of different
slack forms.

m
mn C+

Linear Programming: Solving LP
� (Complication 3) What if after a pivoting step the objective value

of the basic solution does not increase? What is the running time
of the Simplex algorithm?

� So, the Simplex may cycle between slack forms without
increasing the objective value of the basic solution.

� Claim: Each slack form is uniquely determined by the set
of basic and non-basic variables.

� Claim: If the Simplex fails to terminate in steps,
then it cycles.

� There is a way (Bland’s rule) to choose the pivoting variables
so that Simplex always terminates.

m
mn C+

Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible

solution?

� We construct the following LP, 𝐿’ in slack form:

� 𝑧 = −𝑥0
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛 + 𝑥0
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛 + 𝑥0
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛 + 𝑥0
� Claim: The given LP has a feasible solution if and only if the

optimal objective value of 𝐿’ is 0.

� So, all we need to do is to solve 𝐿’. This seems to bring us back
to the original problem. However, we see that 𝐿’ is a simple LP.

Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible

solution?

� We construct the following LP, 𝐿’ in slack form:

� 𝑧 = −𝑥0
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛 + 𝑥0
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛 + 𝑥0
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛 + 𝑥0
� Claim: The given LP has a feasible solution if and only if the

optimal objective value of 𝐿’ is 0.

� Claim: 𝐿’ is feasible.
� The basic solution might not be a feasible solution since some

𝑏𝑖 < 0.

Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible

solution?

� 𝐿’:
� 𝑧 = −𝑥0
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛 + 𝑥0
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛 + 𝑥0
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛 + 𝑥0
� The basic solution might not be a feasible solution since some

𝑏𝑖 < 0.

� Let 𝑏𝑖 be the smallest among 𝑏1, … , 𝑏4. We will pivot using
x125 = 𝑏5 – 𝑎50𝑥1 − … + 𝑥0

Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible

solution?

� 𝐿’:
� 𝑧 = −𝑥0
� 𝑥120 = 𝑏1 − 𝑎11𝑥1 − 𝑎12𝑥2 − … − 𝑎1𝑛𝑥𝑛 + 𝑥0
� 𝑥123 = 𝑏2 − 𝑎21𝑥1 − 𝑎22𝑥2 − … − 𝑎2𝑛𝑥𝑛 + 𝑥0
� .
� 𝑥124 = 𝑏𝑚 − 𝑎40𝑥1 − 𝑎43𝑥2 − … − 𝑎𝑚𝑛𝑥𝑛 + 𝑥0
� Let 𝑏𝑖 be the smallest among 𝑏1, … , 𝑏4. We will pivot using

𝑥125 = 𝑏5 – 𝑎50𝑥1 − … + 𝑥0
� Claim: The basic solution of the LP obtained after the above

pivoting is a feasible solution.

Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible

solution?

� Pre-processing algorithm:
� Given 𝐿, check if all 𝑏𝑖’s are positive. In that case return 𝐿.

� Consider 𝐿’. Perform the pivoting using the equation with smallest 𝑏𝑖 to
obtain 𝐿’’.

� Solve 𝐿’’ using Simplex and find the optimal objective value 𝑂𝑝𝑡.
� If (𝑂𝑝𝑡 ≠ 0), then output “LP is infeasible”.

� Otherwise, let 𝐿𝑆 be the LP obtained at the end of the simplex. Do the
following:

� If 𝑥0 is a basic variable in 𝐿𝑆, then perform a pivoting step to obtain
𝐿𝑆’.

� Remove all instances of 𝑥0 and rewrite the objective function of 𝐿 in
terms of non-basic variables of 𝐿𝑆’.

Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible

solution?
� Pre-processing algorithm: Example
� 𝐿:

� 𝑧 = 2𝑥1 – 𝑥2
� 𝑥3 = 2 – 2𝑥1 + 𝑥2
� 𝑥4 = −4 – 𝑥1 + 5𝑥2

� 𝐿’:
� 𝑧 = − 𝑥0
� 𝑥3 = 2 – 2𝑥1 + 𝑥2+ 𝑥0
� 𝑥4 = −4 – 𝑥1 + 5𝑥2 + 𝑥0

� 𝐿’’: After Pivot using (𝑥4 = …)
� 𝑧 = −4 – 𝑥1 + 5𝑥2 – 𝑥"
� 𝑥3 = 6 – 𝑥1 − 4𝑥2+ 𝑥4
� 𝑥0 = 4 + 𝑥1 − 5𝑥2 + 𝑥4

Linear Programming: Solving LP
� (Complication 1) What if the initial basic solution is not a feasible

solution?
� Pre-processing algorithm: Example
� 𝐿:

� 𝑧 = 2𝑥1 – 𝑥2
� 𝑥3 = 2 – 2𝑥1 + 𝑥2
� 𝑥4 = −4 – 𝑥1 + 5𝑥2

� 𝐿𝑆:
� 𝑧 = −𝑥0
� 𝑥2 = 4/5 – 𝑥0/5 + 𝑥1/5 + 𝑥4/5
� 𝑥3 = 14/5 + 4𝑥0/5 − 9𝑥1/5 + 𝑥4/5

� 𝐿𝑆:
� 𝑧 = 2𝑥1 – 𝑥2 = 2𝑥1 – (4/5 + 𝑥1/5 + 𝑥4/5) = −4/5 +

9𝑥1/5 – 𝑥4/5
� 𝑥2 = 4/5 + 𝑥1/5 + 𝑥4/5
� 𝑥3 = 14/5 − 9𝑥1/5 + 𝑥4/5

End

