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(Greedy) Approximation Algorithms

@ For some problems, even though an efficient algorithm does
not give an optimal solution, it might give a solution that is
provably close to the optimal solution.

@ Such algorithms are called approximation algorithms.
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(Greedy) Approximation Algorithms
Vertex Cover

Minimum Vertex Cover Problem

Given a graph G = (V/, E), find the smallest subset of nodes such
that for every edge (u,v) € E, at least one of u, v is in the subset.

4

Algorithm

For a Maximal matching of the given graph, pick both nodes of
every edge in the matching.

Let S be the subset of nodes returned by our algorithm for an
input graph G. Then |S| <2- OPT.
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(Greedy) Approximation Algorithms
Vertex Cover

Minimum Vertex Cover Problem

Given a graph G = (V, E), find the smallest subset of nodes such
that for every edge (u, v) € E, at least one of u, v is in the subset.

Algorithm

For a Maximal matching of the given graph, pick both nodes of
every edge in the matching.

v
Theorem

Let S be the subset of nodes returned by our algorithm for an
input graph G. Then |S| <2- OPT.

@ Proof sketch. The optimal solution contains at least one node
from every edge in a maximal matching.
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(Greedy) Approximation Algorithms
Set Cover

@ Covering set: Let S be a set containing n elements. A set of
subsets {Si,...,Sm} of S is called a covering set if each
element in S is present in at least one of the subsets
Sy, S5m.

Problem

Set Cover: Given a set S containing n elements and m subsets
S1,...,5Sm of S. Find a covering set of S of minimum cardinality.

o Example
o S={ab,c,d e}
o 51 ={a,b}, Sa ={a,c}, Ss={b,c}, Sa={d,e, f},
S5 = {67 f}
o {51,5,,53,54} is a covering set.
o A covering set of minimum cardinality:?
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(Greedy) Approximation Algorithms
Set Cover

@ Covering set: Let S be a set containing n elements. A set of
subsets {Si,...,Sn} of S is called a covering set if each
element in S is present in at least one of the subsets
S1,.,S5m.

Problem

Set Cover: Given a set S containing n elements and m subsets
S1,...,Sm of S. Find a covering set of S of minimum cardinality.

e Example
o S={ab,c,d e r}
o 51 ={a,b}, Sa ={a,c}, Ss={b,c}, Sa={d,e, f},
S5 = {ea f}
o {51,5,,55,54} is a covering set.
o A covering set of minimum cardinality: {S1, Sz, Sa}
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(Greedy) Approximation Algorithms
Set Cover

Set Cover: Given a set S containing n elements and m subsets
S1,...,Sm of S. Find a covering set of S of minimum cardinality.

@ Application: There are n villages, and the government is trying
to figure out which villages to open schools at so that it has
to open a minimum number of schools. The constraint is that
no children should walk more than 3 miles to get to a school.
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(Greedy) Approximation Algorithms
Set Cover

Set Cover: Given a set S containing n elements and m subsets
S1,...,Sm of S. Find a covering set of S of minimum cardinality.

o Greedy strategy: Give preference to the subsets that covers
the most number of (remaining) elements.

Algorithm
GreedySetCover(S, 51, ..., Sm)
-T+{};R<S

- While R is not empty:
- Pick a subset S; that covers the maximum number
of elements in R
- T TU{S;}; R+ R—-S;

4
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(Greedy) Approximation Algorithms
Set Cover

Problem

Set Cover: Given a set S containing n elements and m subsets
S1,...,Sm of S. Find a covering set of S of minimum cardinality.

o Greedy strategy: Give preference to the subsets that covers the
most number of (remaining) elements.

Algorithm

GreedySetCover(S, Sy, ..., Spm)
-T+{hE R+<S
- While R is not empty:
- Pick a subset S; that covers the maximum number
of elements in R
- T« TU{S,'}; R+~ R-S;

@ Is this greedy algorithm guaranteed to output an optimal solution?
o Counterexample: S ={a, b,c,d,e,f,g,h},S1 =
{a7 b7 C7 d? e}7 52 = {a’ b? C? f}7 53 = {d7 e7g7 h}
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(Greedy) Approximation Algorithms

Set Cover

Problem
Set Cover: Given a set S containing n elements and m subsets

S1,.--,Sm of S. Find a covering set of S of minimum cardinality.

o Greedy strategy: Give preference to the subsets that covers the
most number of (remaining) elements.

Algorithm
GreedySetCover (S, Sy, ...
-T+{hH R<S

- While R is not empty:
- Pick a subset S; that covers the maximum number

»Sm)

of elements in R
-T+ TU{S};, R« R-S5;

@ Is this greedy algorithm guaranteed to output an optimal

solution? No
o Counterexample: S ={a,b,c,d,e,f, g, h}, 5 =

{a,b,c,d, e}, Sy ={a,b,c,f},S3={d,e, g, h}.
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(Greedy) Approximation Algorithms

Set Cover

GreedySetCover(S, S1, ..., Sm)
-T+{}; R<S
- While R is not empty:
- Pick a subset S; that covers the maximum number
of elements in R
- T TU{S,'}; R(—R—S,'

o Claim 1: Let k be the cardinality of any optimal covering set.
Then the greedy algorithm outputs a covering set with cardinality
at most k - Inn.
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(Greedy) Approximation Algorithms

Set Cover

GreedySetCover (S, S, ..., Sm)
-T+—{h R+S
- While R is not empty:
- Pick a subset S; that covers the maximum number
of elements in R
- T+ TU{S,'}; R+ R-S;

o Claim 1: Let k be the cardinality of any optimal covering set.
Then the greedy algorithm outputs a covering set with cardinality
at most k - In n.

Proof of Claim 1

o Let N; be the number of uncovered elements after t iterations of
the loop.
o Claim 1.1: Nt S (1 — 1/k) 0 Nt—l-
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(Greedy) Approximation Algorithms

Set Cover

Algorithm

GreedySetCover(S, Sy, ..., Sp)
-T+{}; R<S
- While R is not empty:
- Pick a subset S; that covers the maximum number
of elements in R
- T «+ TU{S,'}; R+ R-S;

o Claim 1: Let k be the cardinality of any optimal covering set.
Then the greedy algorithm outputs a covering set with cardinality
at most k - Inn.

Proof of Claim 1

@ Let N; be the number of uncovered elements after t iterations of
the loop.
o Claim 1.1: Ny < (1—1/k)- Ne_1.
o Claim 1.2: Ngjnn < 1.
o Use the fact that (1 — x) < e and the equality holds only for
x = 0.
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(Greedy) Approximation Algorithms
Minimum Makespan

Minimum Makespan: You have m identical machines and n jobs.

For each job i/, you are given the duration of this job d(/) that
denotes the time required by any machine to perform this job.
Assign these n jobs on the m machine to minimise the maximum

finishing time.
40
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(Greedy) Approximation Algorithms
Minimum Makespan

Problem
Minimum Makespan: You have m identical machines and n jobs. For

each job i, you are given the duration of this job d(/) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

o Greedy strategy: Assign the next job to a machine with the least

load.
40 - 35
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(Greedy) Approximation Algorithms
Minimum Makespan

Problem
Minimum Makespan: You have m identical machines and n jobs. For

each job 7, you are given the duration of this job d(i) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

o Greedy strategy: Assign the next job to a machine with the least

load.
I
E__
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(Greedy) Approximation Algorithms
Minimum Makespan

Problem
Minimum Makespan: You have m identical machines and n jobs. For

each job 7, you are given the duration of this job d(i) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

o Greedy strategy: Assign the next job to a machine with the least

load.
! I
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(Greedy) Approximation Algorithms
Minimum Makespan

Problem
Minimum Makespan: You have m identical machines and n jobs. For

each job 7, you are given the duration of this job d(i) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

o Greedy strategy: Assign the next job to a machine with the least

load.
40
30 35
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(Greedy) Approximation Algorithms
Minimum Makespan

Problem
Minimum Makespan: You have m identical machines and n jobs. For

each job i, you are given the duration of this job d(i) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

@ Greedy strategy: Assign the next job to a machine with the least
load.
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(Greedy) Approximation Algorithms
Minimum Makespan

Minimum Makespan: You have m identical machines and n jobs. For
each job i, you are given the duration of this job d(/) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

o Greedy strategy: Assign the next job to a machine with the least

40
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load.
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(Greedy) Approximation Algorithms

Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job /, you are given the duration of this job d(/) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

o Greedy strategy: Assign the next job to a machine with the least

load.
35
30
5

@ s this solution optimal?
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(Greedy) Approximation Algorithms

Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job /, you are given the duration of this job d(/) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

o Greedy strategy: Assign the next job to a machine with the least

load.
35
30
5

@ Is this solution optimal? No

Ragesh Jaiswal, CSE, IITD COL758: Advanced Algorithms



(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan
- While all jobs are not assigned
- Assign the next job to a machine with the least load

o Let OPT be the optimal value.
o Let G denote the maximum finishing time of a machine as per

the greedy assignment.
o Clam1l: G<2-0PT.
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan
- While all jobs are not assigned
- Assign the next job to a machine with the least load

o Let OPT be the optimal value.
o Let G denote the maximum finishing time of a machine as per

the greedy assignment.
o Clam1l: G<2-0PT.

Proof of Claim 1

o Claim 1.1: OPT > d()+d@)+..+d(n)
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan
- While all jobs are not assigned
- Assign the next job to a machine with the least load

o Let OPT be the optimal value.
o Let G denote the maximum finishing time of a machine as per

the greedy assignment.
o Clam1l: G<2-0PT.

Proof of Claim 1

o Claim 1.1: OPT > 2Wtd@t..+d(n)
o Claim 1.2: For any job t, OPT > d(t).
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan
- While all jobs are not assigned
- Assign the next job to a machine with the least load

@ Let OPT be the optimal value.

@ Let G denote the maximum finishing time of a machine as per
the greedy assignment.

o Claim1: G <2-OPT.

Proof of Claim 1

Claim 1.1: OPT > 4td@t..+d(n)
Claim 1.2: For any job t, OPT > d(t).
Let the j® machine finish last. Let i be the last job assigned to

machine j. Let s be the start time of job i on machine j.
Claim 1.3: s < d)+d(2)+...+d(n)
—— - m

© 6 o
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan
- While all jobs are not assigned
- Assign the next job to a machine with the least load

o Let OPT be the optimal value.

o Let G denote the maximum finishing time of a machine as per
the greedy assignment.

o Claim1: G<2-0PT.

Proof of Claim 1

Claim 1.1: OPT > d+d@)+.4d(n)

T EE— - m

o Claim 1.2: For any job t, OPT > d(t).

Let the jt machine finish last. Let i be the last job assigned to
machine j. Let s be the start time of job / on machine j.

Claim 1.3: s < 91)+d@)+...4d(n)

—_ - m

So, G < s+ d(i)

This implies that G < w + d(i) (using claim 1.3)

V.
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(Greedy) Approximation Algorithms

Minimum Makespan

Algorithm
GreedyMakespan
- While all jobs are not assigned
- Assign the next job to a machine with the least load

o Let OPT be the optimal value.

o Let G denote the maximum finishing time of a machine as per
the greedy assignment.

o Claim1: G <2-0PT.

Proof of Claim 1

o Claim 1.1: OPT > dW+d@)+..+d(n)
—==eas = m
o Claim 1.2: For any job t, OPT > d(t).
Let the jt machine finish last. Let i be the last job assigned to
machine j. Let s be the start time of job i on machine ;.
Claim 1.3: s < d(1)+d(2)+...+d(n)
So, G < s+d(i)
This implies that G < M=t 4 (/) (using claim 1.3)
This implies that G < OPT + d(i) (using claim 1.1)

4

Ragesh Jaiswal, CSE, IITD COL758: Advanced Algorithms




(Greedy) Approximation Algorithms

Minimum Makespan

Algorithm
GreedyMakespan
- While all jobs are not assigned
- Assign the next job to a machine with the least load

o Let OPT be the optimal value.

@ Let G denote the maximum finishing time of a machine as per
the greedy assignment.

o Claim1: G <2-0PT.

Proof of Claim 1

o Claim 1.1: OPT > dWtd@)+.+d(n)
=l oas = m
o Claim 1.2: For any job t, OPT > d(t).
o Let the j™ machine finish last. Let i be the last job assigned to
machine j. Let s be the start time of job / on machine j.
Claim 1.3 s < d)+d@)+..+d(n)
So, G < s+ d(i)
This implies that G < w + d(i) (using claim 1.3)
This implies that G < OPT + d(i) (using claim 1.1)
This implies that G < OPT + OPT (using claim 1.2)

4
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(Greedy) Approximation Algorithms

k-center

Problem

k-center: Given a set X of n points from a Metric Space (X, D), find
k points C (called centers) such that the maximum distance of a point
in X to its closest center in C is minimised. In other words, find k
centers C such that the following cost function gets minimised:

X) = in D .
cost(C, X) Tea)%({gyrg (x,¢)}
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(Greedy) Approximation Algorithms

k-center

Problem

k-center: Given a set X of n points from a Metric Space (X, D), find
k points C (called centers) such that the maximum distance of a point
in X to its closest center in C is minimised. In other words, find k
centers C such that the following cost function gets minimised:

cost(C, X) = E(nea;(({ggg D(x,c)}.

1

@ Any set of k centers, partitions the dataset X into k “custers’
based on closest center. See the 2-D Euclidean plane example.

@ So, the k-center problem is one way to cluster a dataset.
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(Greedy) Approximation Algorithms
k-center

k-center: Given a set X of n points from a Metric Space (X, D), find
k points C (called centers) such that the maximum distance of a point
in X to its closest center in C is minimised. In other words, find k
centers C such that the following cost function gets minimised:

X) = in D .
cost(C, X) Tea)%({gg? (x,¢)}

Algorithm

Farthest-First (X, k)
- Let x be an arbitrary point in X
- C={x}
- for i =2 to k:
- Let ¢ be the farthest point in X from points in C
-C=CU{c}
- return(C)

v
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(Greedy) Approximation Algorithms

k-center

k-center: Given a set X of n points from a Metric Space (X, D), find

k points C (called centers) such that the maximum distance of a point
in X to its closest center in C is minimised. In other words, find k
centers C such that the following cost function gets minimised:

cost(C, X) = Xmea)><<{rcr1€|2 D(x,c)}.

Farthest-First (X, k)
- Let x be an arbitrary point in X
- C={x}
- for i = 2 to k:
- Let ¢ be the farthest point in X from points in C
-C=CuU{c}
- return(C)

J
Theorem

For any dataset X, let C be the centres returned by the
Farthest-First algorithm. Then cost(C, X) < 2- OPT.

/
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(Greedy) Approximation Algorithms
k-center

Algorithm

Farthest-First (X, k)
- Let x be an arbitrary point in X
- C={x}
- for i =2 to k:
- Let ¢ be the farthest point in X from points in C
- C=CU{c}
- return(C)

D

Theorem

For any dataset X, let C be the centres returned by the
Farthest-First algorithm. Then cost(C, X) <2- OPT.

D

Proof sketch
o Let o1, ..., 04 be the optimal centers and let X, ..., Xk be the
corresponding Voronoi partitions of X.
@ Case 1: Every X; has exactly one center (say c¢;) from C.
o Case 2: There is an X; that has more than one center from C. )

Ragesh Jaiswal, CSE, IITD COL758: Advanced Algorithms




(Greedy) Approximation Algorithms

k-center

Farthest-First (X, k)
- Let x be an arbitrary point in X
- C={x}
-for i =2 to k:
- Let ¢ be the farthest point in X from points in C
-C=CU{c}
- return(C)

For any dataset X, let C be the centres returned by the
Farthest-First algorithm. Then cost(C, X) < 2- OPT.

Proof sketch

o Let o1, ..., 0k be the optimal centers and let Xi, ..., X be the
corresponding Voronoi partitions of X.
o Case 1: Every X; has exactly one center (say ¢;) from C.
o The distance of any point x € X; from ¢; is bounded by
D(x, 0i) + D(oj,¢i) <2- OPT.
o Case 2: There is an X; that has more than one center from C.
o Let c and ¢’ be two centers from C in X; such that ¢’ is chosen
later than ¢ by our algorithm. Since ¢’ is the “farthest’ point from
C at the time it was chosen, the distance of any point x € X from
C is bounded by the distance of ¢’ from c. This, in turn, is
bounded by D(c, 0;) + D(0;,c’) <2- OPT.
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End )
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