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(Greedy) Approximation Algorithms

For some problems, even though an efficient algorithm does
not give an optimal solution, it might give a solution that is
provably close to the optimal solution.

Such algorithms are called approximation algorithms.
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(Greedy) Approximation Algorithms
Vertex Cover

Minimum Vertex Cover Problem

Given a graph G = (V ,E ), find the smallest subset of nodes such
that for every edge (u, v) ∈ E , at least one of u, v is in the subset.

Algorithm

For a Maximal matching of the given graph, pick both nodes of
every edge in the matching.

Theorem

Let S be the subset of nodes returned by our algorithm for an
input graph G . Then |S | ≤ 2 · OPT .
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(Greedy) Approximation Algorithms
Vertex Cover

Minimum Vertex Cover Problem

Given a graph G = (V ,E ), find the smallest subset of nodes such
that for every edge (u, v) ∈ E , at least one of u, v is in the subset.

Algorithm

For a Maximal matching of the given graph, pick both nodes of
every edge in the matching.

Theorem

Let S be the subset of nodes returned by our algorithm for an
input graph G . Then |S | ≤ 2 · OPT .

Proof sketch. The optimal solution contains at least one node
from every edge in a maximal matching.
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(Greedy) Approximation Algorithms
Set Cover

Covering set: Let S be a set containing n elements. A set of
subsets {S1, ...,Sm} of S is called a covering set if each
element in S is present in at least one of the subsets
S1, ...,Sm.

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Example

S = {a, b, c , d , e, f }
S1 = {a, b}, S2 = {a, c}, S3 = {b, c}, S4 = {d , e, f },
S5 = {e, f }
{S1,S2,S3,S4} is a covering set.
A covering set of minimum cardinality:?
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(Greedy) Approximation Algorithms
Set Cover

Covering set: Let S be a set containing n elements. A set of
subsets {S1, ...,Sm} of S is called a covering set if each
element in S is present in at least one of the subsets
S1, ...,Sm.

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Example

S = {a, b, c , d , e, f }
S1 = {a, b}, S2 = {a, c}, S3 = {b, c}, S4 = {d , e, f },
S5 = {e, f }
{S1,S2,S3,S4} is a covering set.
A covering set of minimum cardinality: {S1,S2,S4}
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(Greedy) Approximation Algorithms
Set Cover

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Application: There are n villages, and the government is trying
to figure out which villages to open schools at so that it has
to open a minimum number of schools. The constraint is that
no children should walk more than 3 miles to get to a school.
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(Greedy) Approximation Algorithms
Set Cover

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Greedy strategy: Give preference to the subsets that covers
the most number of (remaining) elements.

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si
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(Greedy) Approximation Algorithms
Set Cover

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Greedy strategy: Give preference to the subsets that covers the
most number of (remaining) elements.

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Is this greedy algorithm guaranteed to output an optimal solution?
Counterexample: S = {a, b, c , d , e, f , g , h},S1 =
{a, b, c , d , e}, S2 = {a, b, c , f },S3 = {d , e, g , h}.
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(Greedy) Approximation Algorithms
Set Cover

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Greedy strategy: Give preference to the subsets that covers the
most number of (remaining) elements.

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Is this greedy algorithm guaranteed to output an optimal
solution? No
Counterexample: S = {a, b, c , d , e, f , g , h},S1 =
{a, b, c , d , e}, S2 = {a, b, c , f },S3 = {d , e, g , h}.
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(Greedy) Approximation Algorithms
Set Cover

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Claim 1: Let k be the cardinality of any optimal covering set.
Then the greedy algorithm outputs a covering set with cardinality
at most k · ln n.
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(Greedy) Approximation Algorithms
Set Cover

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Claim 1: Let k be the cardinality of any optimal covering set.
Then the greedy algorithm outputs a covering set with cardinality
at most k · ln n.

Proof of Claim 1

Let Nt be the number of uncovered elements after t iterations of
the loop.
Claim 1.1: Nt ≤ (1− 1/k) · Nt−1.
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(Greedy) Approximation Algorithms
Set Cover

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Claim 1: Let k be the cardinality of any optimal covering set.
Then the greedy algorithm outputs a covering set with cardinality
at most k · ln n.

Proof of Claim 1

Let Nt be the number of uncovered elements after t iterations of
the loop.
Claim 1.1: Nt ≤ (1− 1/k) · Nt−1.
Claim 1.2: Nk·ln n < 1.

Use the fact that (1− x) ≤ e−x and the equality holds only for
x = 0.
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(Greedy) Approximation Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs.
For each job i , you are given the duration of this job d(i) that
denotes the time required by any machine to perform this job.
Assign these n jobs on the m machine to minimise the maximum
finishing time.
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(Greedy) Approximation Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

Greedy strategy: Assign the next job to a machine with the least
load.
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Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
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(Greedy) Approximation Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

Greedy strategy: Assign the next job to a machine with the least
load.

Is this solution optimal?
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(Greedy) Approximation Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time required by any machine to perform this job. Assign these n jobs
on the m machine to minimise the maximum finishing time.

Greedy strategy: Assign the next job to a machine with the least
load.

Is this solution optimal? No
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with the least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with the least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with the least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with the least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).
Let the j th machine finish last. Let i be the last job assigned to
machine j . Let s be the start time of job i on machine j .
Claim 1.3: s ≤ d(1)+d(2)+...+d(n)

m
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with the least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).
Let the j th machine finish last. Let i be the last job assigned to
machine j . Let s be the start time of job i on machine j .
Claim 1.3: s ≤ d(1)+d(2)+...+d(n)

m
So, G ≤ s + d(i)

This implies that G ≤ d(1)+...+d(n)
m + d(i) (using claim 1.3)
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with the least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).
Let the j th machine finish last. Let i be the last job assigned to
machine j . Let s be the start time of job i on machine j .
Claim 1.3: s ≤ d(1)+d(2)+...+d(n)

m
So, G ≤ s + d(i)

This implies that G ≤ d(1)+...+d(n)
m + d(i) (using claim 1.3)

This implies that G ≤ OPT + d(i) (using claim 1.1)
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(Greedy) Approximation Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with the least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).
Let the j th machine finish last. Let i be the last job assigned to
machine j . Let s be the start time of job i on machine j .
Claim 1.3: s ≤ d(1)+d(2)+...+d(n)

m
So, G ≤ s + d(i)

This implies that G ≤ d(1)+...+d(n)
m + d(i) (using claim 1.3)

This implies that G ≤ OPT + d(i) (using claim 1.1)
This implies that G ≤ OPT + OPT (using claim 1.2)
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(Greedy) Approximation Algorithms
k-center

Problem

k-center: Given a set X of n points from a Metric Space (X ,D), find
k points C (called centers) such that the maximum distance of a point
in X to its closest center in C is minimised. In other words, find k
centers C such that the following cost function gets minimised:

cost(C ,X ) ≡ max
x∈X
{min
c∈C

D(x , c)}.
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(Greedy) Approximation Algorithms
k-center

Problem

k-center: Given a set X of n points from a Metric Space (X ,D), find
k points C (called centers) such that the maximum distance of a point
in X to its closest center in C is minimised. In other words, find k
centers C such that the following cost function gets minimised:

cost(C ,X ) ≡ max
x∈X
{min
c∈C

D(x , c)}.

Any set of k centers, partitions the dataset X into k “custers”
based on closest center. See the 2-D Euclidean plane example.

So, the k-center problem is one way to cluster a dataset.
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(Greedy) Approximation Algorithms
k-center

Problem

k-center: Given a set X of n points from a Metric Space (X ,D), find
k points C (called centers) such that the maximum distance of a point
in X to its closest center in C is minimised. In other words, find k
centers C such that the following cost function gets minimised:

cost(C ,X ) ≡ max
x∈X
{min
c∈C

D(x , c)}.

Algorithm

Farthest-First(X , k)
- Let x be an arbitrary point in X
- C = {x}
- for i = 2 to k :

- Let c be the farthest point in X from points in C
- C = C ∪ {c}

- return(C )
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(Greedy) Approximation Algorithms
k-center

Problem

k-center: Given a set X of n points from a Metric Space (X ,D), find
k points C (called centers) such that the maximum distance of a point
in X to its closest center in C is minimised. In other words, find k
centers C such that the following cost function gets minimised:

cost(C ,X ) ≡ max
x∈X
{min
c∈C

D(x , c)}.

Algorithm

Farthest-First(X , k)
- Let x be an arbitrary point in X
- C = {x}
- for i = 2 to k :

- Let c be the farthest point in X from points in C
- C = C ∪ {c}

- return(C )

Theorem

For any dataset X , let C be the centres returned by the
Farthest-First algorithm. Then cost(C ,X ) ≤ 2 · OPT .
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(Greedy) Approximation Algorithms
k-center

Algorithm

Farthest-First(X , k)
- Let x be an arbitrary point in X
- C = {x}
- for i = 2 to k :

- Let c be the farthest point in X from points in C
- C = C ∪ {c}

- return(C )

Theorem

For any dataset X , let C be the centres returned by the
Farthest-First algorithm. Then cost(C ,X ) ≤ 2 · OPT .

Proof sketch

Let o1, ..., ok be the optimal centers and let X1, ...,Xk be the
corresponding Voronoi partitions of X .
Case 1: Every Xi has exactly one center (say ci ) from C .
Case 2: There is an Xi that has more than one center from C .
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(Greedy) Approximation Algorithms
k-center

Algorithm

Farthest-First(X , k)
- Let x be an arbitrary point in X
- C = {x}
- for i = 2 to k :

- Let c be the farthest point in X from points in C
- C = C ∪ {c}

- return(C )

Theorem

For any dataset X , let C be the centres returned by the
Farthest-First algorithm. Then cost(C ,X ) ≤ 2 · OPT .

Proof sketch

Let o1, ..., ok be the optimal centers and let X1, ...,Xk be the
corresponding Voronoi partitions of X .
Case 1: Every Xi has exactly one center (say ci ) from C .

The distance of any point x ∈ Xi from ci is bounded by
D(x , oi ) + D(oi , ci ) ≤ 2 · OPT .

Case 2: There is an Xi that has more than one center from C .

Let c and c ′ be two centers from C in Xi such that c ′ is chosen
later than c by our algorithm. Since c ′ is the “farthest” point from
C at the time it was chosen, the distance of any point x ∈ X from
C is bounded by the distance of c ′ from c . This, in turn, is
bounded by D(c , oi ) + D(oi , c

′) ≤ 2 · OPT .
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End
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