COL758: Advanced Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL758: Advanced Algorithms

Computational Intractability

Ragesh Jaiswal, CSE, IITD COL758: Advanced Algorithms

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties hold:

• $X \in NP$. • For all $Y \in NP$, $Y \leq_p X$.

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties hold:

- $X \in \mathsf{NP}.$
- **2** For all $Y \in NP$, $Y \leq_p X$.

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- <u>Claim 1</u>: CIRCUIT-SAT is NP-complete.
- <u>Claim 2</u>: CIRCUIT-SAT \leq_p 3-SAT.

/□ ▶ < 글 ▶ < 글

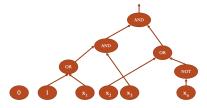
Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- <u>Claim 1</u>: CIRCUIT-SAT is NP-complete.
- <u>Claim 2</u>: CIRCUIT-SAT \leq_p 3-SAT.
- Circuit: A directed acyclic graph where each node is either:
 - Constant nodes: Labeled 0/1
 - Input nodes: These denote the variables
 - Gates: AND, OR, and NOT

There is a single output node.



∃ ► < ∃ ►</p>

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- <u>Claim 1</u>: CIRCUIT-SAT is NP-complete.
- <u>Claim 2</u>: CIRCUIT-SAT \leq_p 3-SAT.
- <u>Circuit</u>: A directed acyclic graph where each node is either:
 - Constant nodes: Labeled 0/1
 - Input nodes: These denote the variables
 - Gates: AND, OR, and NOT

There is a single output node.

Problem

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- <u>Claim 1</u>: CIRCUIT-SAT is NP-complete.
 - <u>Fact</u>: For every algorithm that runs in time polynomial in the input size *n*, there is an equivalent circuit of size polynomial in *n*.
- <u>Claim 2</u>: CIRCUIT-SAT \leq_p 3-SAT.
- <u>Circuit</u>: A directed acyclic graph where each node is either:
 - <u>Constant nodes</u>: Labeled 0/1
 - Input nodes: These denote the variables
 - <u>Gates</u>: AND, OR, and NOT

There is a single output node.

Problem

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- <u>Claim 1</u>: CIRCUIT-SAT is NP-complete.
 - <u>Fact</u>: For every algorithm that runs in time polynomial in the input size *n*, there is an equivalent circuit of size polynomial in *n*.
 - Given an input instance *s* of any NP problem *X*, consider the equivalent circuit for the efficient certifier of *X*. The input gates of this circuit has *s* and *t*.

• $s \in X$ if and only if this circuit is satisfiable.

• <u>Claim 2</u>: CIRCUIT-SAT \leq_p 3-SAT.

Problem

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- <u>Claim 1</u>: CIRCUIT-SAT is NP-complete.
 - <u>Fact</u>: For every algorithm that runs in time polynomial in the input size *n*, there is an equivalent circuit of size polynomial in *n*.
 - Given an input instance *s* of any NP problem *X*, consider the equivalent circuit for the efficient certifier of *X*. The input gates of this circuit has *s* and *t*.

• $s \in X$ if and only if this circuit is satisfiable.

- Claim 2: CIRCUIT-SAT \leq_p 3-SAT.
 - For any circuit, we can write an equivalent 3-SAT formula.

Problem

Definition (NP)

A problem X is said to be in NP iff there is an efficient certifier for X.

Definition (NP-complete)

A problem is said to be NP-complete iff the following two properties hold:

- X ∈ NP
- For all $Y \in \mathsf{NP}$, $Y \leq_p X$

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Definition (NP-hard)

A problem X is said to be NP-hard iff the following property holds:

X ∈ NP

• For all
$$Y \in \mathsf{NP}$$
, $Y \leq_p X$

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

• <u>Claim 1</u>: INDEPENDENT-SET, VERTEX-COVER, SET-COVER are also NP-complete.

Proof of Claim 1

- These problems are in NP.
- 3-SAT \leq_p INDEPENDENT-SET \leq_p VERTEX-COVER \leq_p SET-COVER

Computational Intractability TSP: Travelling Salesperson

Problem

<u>TSP</u>: Given a complete, weighted, directed graph G and an integer k, determine if there is a tour in the graph of total length at most k.

- Claim 1: TSP \in NP
 - <u>Proof sketch</u>: A tour of length at most k is a certificate.

Computational Intractability TSP: Travelling Salesperson

Problem

<u>TSP</u>: Given a complete, weighted, directed graph G and an integer k, determine if there is a tour in the graph of total length at most k.

- Claim 1: TSP \in NP
 - <u>Proof sketch</u>: A tour of length at most k is a certificate.
- Claim 2: 3-SAT \leq_p TSP

Proof of Claim 2

- <u>Claim 2.1</u>: 3-SAT \leq_p HAMILTONIAN-CYCLE
- <u>Claim 2.2</u>: HAMILTONIAN-CYCLE \leq_p TSP

Problem

<u>HAMILTONIAN-CYCLE</u>: Given an unweighted, directed graph, determine if there is a Hamiltonian cycle in the graph.

• Hamiltonian cycle: A cycle that visits each vertex exactly once.

Computational Intractability

TSP: Travelling Salesperson

Problem

<u>TSP</u>: Given a complete, weighted, directed graph G and an integer k, determine if there is a tour in the graph of total length at most k.

Problem

<u>HAMILTONIAN-CYCLE</u>: Given an unweighted, directed graph, determine if there is a Hamiltonian cycle in the graph.

- Hamiltonian cycle: A cycle that visits each vertex exactly once.
- <u>Claim 2.2</u>: HAMILTONIAN-CYCLE \leq_p TSP

Proof of Claim 2.2

• Given an unweighted, directed graph G, construct the following complete, directed, weighted graph G':

- For each edge (u, v) in G, give the weight of 1 to edge (u, v) in G'
- For each pair (u, v) such that there is no edge from u to v in G, add an edge (u, v) with weight 2 in G'

• <u>Claim 2.2.1</u>: *G* has a Hamiltonian cycle if and only if *G'* has a tour of length at most *n*

Computational Intractability TSP: Travelling Salesperson

Problem

<u>TSP</u>: Given a complete, weighted, directed graph G and an integer k, determine if there is a tour in the graph of total length at most k.

- Claim 1: TSP \in NP
 - <u>Proof sketch</u>: A tour of length at most k is a certificate.
- Claim 2: 3-SAT \leq_p TSP

Proof of Claim 2

- <u>Claim 2.1</u>: 3-SAT \leq_p HAMILTONIAN-CYCLE
- <u>Claim 2.2</u>: HAMILTONIAN-CYCLE \leq_p TSP

Problem

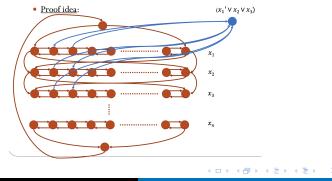
<u>HAMILTONIAN-CYCLE</u>: Given an unweighted, directed graph, determine if there is a Hamiltonian cycle in the graph.

• Hamiltonian cycle: A cycle that visits each vertex exactly once.

• Claim 2.1: 3-SAT \leq_p HAMILTONIAN-CYCLE

Proof of Claim 2.1

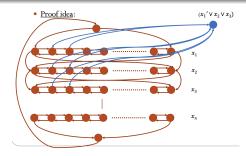
Given an instance of the 3-SAT problem (a formula Ω with n variables and m clauses), we need to create a directed graph G such that Ω is satisfiable if and only if G has a Hamiltonian cycle.



• Claim 2.1: 3-SAT \leq_p HAMILTONIAN-CYCLE

Proof of Claim 2.1

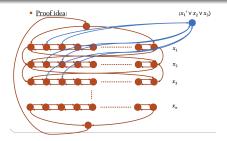
- Given an instance of the 3-SAT problem (a formula Ω with n variables and m clauses), we need to create a directed graph G such that Ω is satisfiable if and only if G has a Hamiltonian cycle.
- <u>Claim 2.1.1</u>: If the 3-SAT formula is satisfiable, then there is a Hamiltonian cycle in the constructed graph.



• Claim 2.1: 3-SAT \leq_p HAMILTONIAN-CYCLE

Proof of Claim 2.1

- Given an instance of the 3-SAT problem (a formula Ω with n variables and m clauses), we need to create a directed graph G such that Ω is satisfiable if and only if G has a Hamiltonian cycle.
- <u>Claim 2.1.1</u>: If the 3-SAT formula is satisfiable, then there is a Hamiltonian cycle in the constructed graph.
- <u>Claim 2.1.2</u>: If the constructed graph has a Hamiltonian cycle, then the 3-SAT formula has a satisfying assignment.



A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

<u>HAMILTONIAN-PATH</u>: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

<u>HAMILTONIAN-PATH</u>: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

• <u>Claim 1</u>: HAMILTONIAN-PATH is NP-complete.

A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

<u>HAMILTONIAN-PATH</u>: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

• <u>Claim 1</u>: HAMILTONIAN-PATH is NP-complete.

Proof of Claim 1

• Claim 1.1: HAMILTONIAN-PATH \in NP

A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

<u>HAMILTONIAN-PATH</u>: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

• <u>Claim 1</u>: HAMILTONIAN-PATH is NP-complete.

Proof of Claim 1

- Claim 1.1: HAMILTONIAN-PATH \in NP
 - A Hamiltonian path acts as a certificate.

A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

<u>HAMILTONIAN-PATH</u>: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

• <u>Claim 1</u>: HAMILTONIAN-PATH is NP-complete.

Proof of Claim 1

- Claim 1.1: HAMILTONIAN-PATH \in NP
 - A Hamiltonian path acts as a certificate.
- <u>Claim 1.2</u>: HAMILTONIAN-PATH is NP-hard.

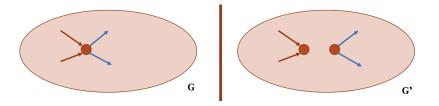
• Claim 1.2.1: HAMILTONIAN-CYCLE \leq_p HAMILTONIAN-PATH

Computational Intractability Hamiltonian Path

• <u>Claim 1.2.1</u>: HAMILTONIAN-CYCLE \leq_p HAMILTONIAN-PATH

Proof of Claim 1.2.1

- Consider the graph G' constructed from graph G.
- There is a Hamiltonian cycle in *G* if and only there is a Hamiltonian path in *G*'.



Computational Intractability *k*-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge (u, v), u and v are assigned different colors.

Problem

<u>k-COLORING</u>: Given a graph G, determine if G is k-colorable.

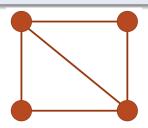


Figure: Is this graph 2-colorable?

Computational Intractability *k*-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge (u, v), u and v are assigned different colors.

Problem

<u>k-COLORING</u>: Given a graph G, determine if G is k-colorable.

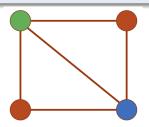


Figure: Is this graph 2-colorable? Yes

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge (u, v), u and v are assigned different colors.

Problem

<u>k-COLORING</u>: Given a graph G, determine if G is k-colorable.

Problem

<u>2-COLORING</u>: Given a graph G, determine if G is 2-colorable.

• How hard is the 2-COLORING problem?

Computational Intractability *k*-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge (u, v), u and v are assigned different colors.

Problem

<u>k-COLORING</u>: Given a graph G, determine if G is k-colorable.

Problem

<u>2-COLORING</u>: Given a graph G, determine if G is 2-colorable.

- How hard is the 2-COLORING problem?
 - 2-COLORING ∈ P since G is 2-colorable if and only if G is bipartite and we know an efficient algorithm for checking if a given graph is bipartite.

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge (u, v), u and v are assigned different colors.

Problem

<u>k-COLORING</u>: Given a graph G, determine if G is k-colorable.

Problem

<u>3-COLORING</u>: Given a graph G, determine if G is 3-colorable.

• How hard is the 3-COLORING problem?

Computational Intractability *k*-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge (u, v), u and v are assigned different colors.

Problem

<u>*k*-COLORING</u>: Given a graph G, determine if G is *k*-colorable.

Problem

<u>3-COLORING</u>: Given a graph G, determine if G is 3-colorable.

- How hard is the 3-COLORING problem?
- <u>Claim 1</u>: 3-COLORING is NP-complete.

Problem

<u>3-COLORING</u>: Given a graph G, determine if G is 3-colorable.

• <u>Claim 1</u>: 3-COLORING is NP-complete.

Proof of Claim 1

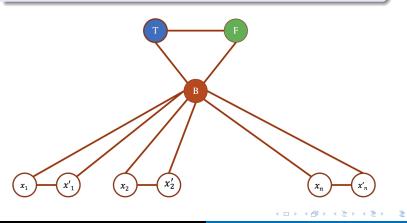
- <u>Claim 1.1</u>: 3-COLORING is in NP
 - A short certificate is a 3-coloring of the graph.
- Claim 1.2: 3-SAT \leq_p 3-COLORING

Computational Intractability 3-COLORING

• Claim 1.2: 3-SAT \leq_p 3-COLORING

Proof ideas for Claim 1.2

• Consider the following gadget. There is a bijection between colors and truth values.

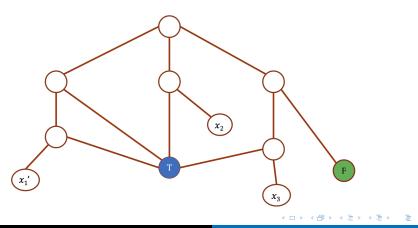


Computational Intractability 3-COLORING

• Claim 1.2: 3-SAT \leq_p 3-COLORING

Proof ideas for Claim 1.2

• How we encode a clause, say $(\bar{x}_1 \lor x_2 \lor x_3)$.

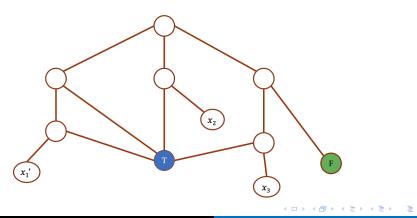


Computational Intractability 3-COLORING

• Claim 1.2: 3-SAT \leq_p 3-COLORING

Proof ideas for Claim 1.2

• <u>Claim 1.2.1</u>: There is no 3 coloring of the graph below with nodes \bar{x}_1, x_2 , and x_3 assigned *F* color.

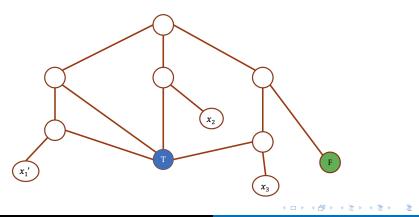


Computational Intractability 3-COLORING

• Claim 1.2: 3-SAT \leq_p 3-COLORING

Proof ideas for Claim 1.2

• <u>Claim 1.2.2</u>: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_1, x_2 , and x_3 assigned T color.

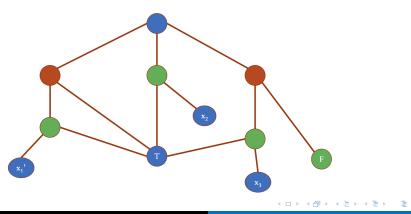


Computational Intractability 3-COLORING

• Claim 1.2: 3-SAT \leq_p 3-COLORING

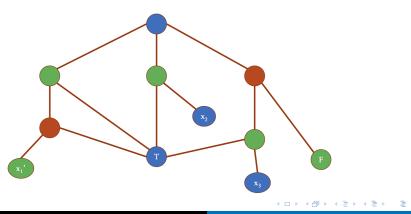
Proof ideas for Claim 1.2

- <u>Claim 1.2.2</u>: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_1, x_2 , and x_3 assigned T color.
 - $\bar{x}_1 : T, x_2 : T, x_3 : T$



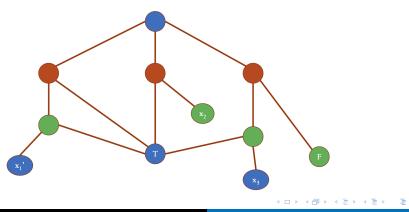
• Claim 1.2: 3-SAT \leq_p 3-COLORING

- <u>Claim 1.2.2</u>: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_1, x_2 , and x_3 assigned T color.
 - $\bar{x}_1 : F, x_2 : T, x_3 : T$



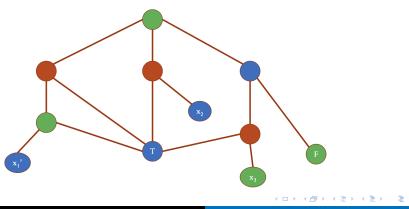
• Claim 1.2: 3-SAT \leq_p 3-COLORING

- <u>Claim 1.2.2</u>: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_1, x_2 , and x_3 assigned T color.
 - $\bar{x}_1 : T, x_2 : F, x_3 : T$



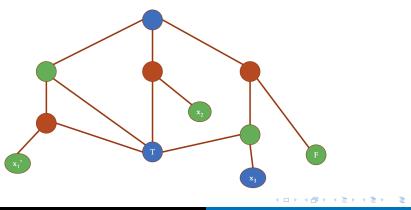
• Claim 1.2: 3-SAT \leq_p 3-COLORING

- <u>Claim 1.2.2</u>: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_1, x_2 , and x_3 assigned T color.
 - $\bar{x}_1 : T, x_2 : T, x_3 : F$



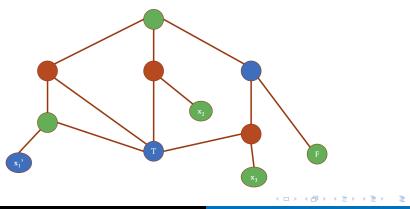
• Claim 1.2: 3-SAT \leq_p 3-COLORING

- <u>Claim 1.2.2</u>: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_1, x_2 , and x_3 assigned T color.
 - $\bar{x}_1 : F, x_2 : F, x_3 : T$



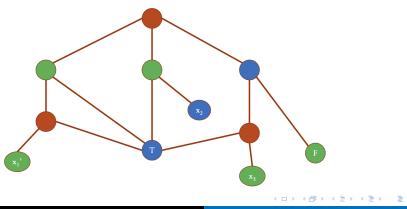
• Claim 1.2: 3-SAT \leq_p 3-COLORING

- <u>Claim 1.2.2</u>: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_1, x_2 , and x_3 assigned T color.
 - $\bar{x}_1 : T, x_2 : F, x_3 : F$



• Claim 1.2: 3-SAT \leq_p 3-COLORING

- <u>Claim 1.2.2</u>: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_1, x_2 , and x_3 assigned T color.
 - $\bar{x}_1 : F, x_2 : T, x_3 : F$



• Claim 1.2: 3-SAT \leq_p 3-COLORING

Proof ideas for Claim 1.2

• <u>Claim 1.2.3</u>: The given formula is satisfiable if and only if the constructed graph has a 3 coloring.

SUBSET-SUM

Given natural numbers $w_1, ..., w_n$ and a target number W, determine if there is a subset S of $\{1, ..., n\}$ such that $\sum_{i \in S} w_i = W$.

SCHEDULING

Given *n* jobs with start time s_i and duration t_i and deadline d_i , determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

• Claim 1: SUBSET-SUM \in NP

SUBSET-SUM

Given natural numbers $w_1, ..., w_n$ and a target number W, determine if there is a subset S of $\{1, ..., n\}$ such that $\sum_{i \in S} w_i = W$.

SCHEDULING

Given *n* jobs with start time s_i and duration t_i and deadline d_i , determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP
- Claim 2: SCHEDULING \in NP

SUBSET-SUM

Given natural numbers $w_1, ..., w_n$ and a target number W, determine if there is a subset S of $\{1, ..., n\}$ such that $\sum_{i \in S} w_i = W$.

SCHEDULING

Given *n* jobs with start time s_i and duration t_i and deadline d_i , determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP
- Claim 2: SCHEDULING \in NP
- Claim 3: SUBSET-SUM \leq_p SCHEDULING

SUBSET-SUM

Given natural numbers $w_1, ..., w_n$ and a target number W, determine if there is a subset S of $\{1, ..., n\}$ such that $\sum_{i \in S} w_i = W$.

SCHEDULING

Given *n* jobs with start time s_i and duration t_i and deadline d_i , determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP
- <u>Claim 2</u>: SCHEDULING \in NP
- <u>Claim 3</u>: SUBSET-SUM ≤_p SCHEDULING

Proof sketch for Claim 3

Given an instance of the subset sum problem $(\{w_1, ..., w_n\}, W)$, we construct the following instance of the Scheduling problem: ($(0, w_1, S + 1), ..., (0, w_n, S + 1), (W, 1, W + 1)$). We then argue that there is a subset that sums to W if and only if the (n + 1) jobs can be scheduled. Here $S = w_1 + ... + w_n$.

Computational Intractability Many-one reduction

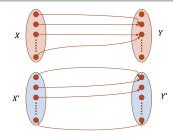
- Most of the polynomial-time reductions X ≤_p Y that we have seen are of the following general nature: We give an efficient mapping from instances of X to instances of Y such that "yes" instances of X map to "yes" instances of Y and "no" instances of X map to "no" instances of Y.
- Such reductions have special name. They are called many-one reductions.

Computational Intractability Many-one reduction

- Most of the polynomial-time reductions X ≤_p Y that we have seen are of the following general nature: We give an efficient mapping from instances of X to instances of Y such that "yes" instances of X map to "yes" instances of Y and "no" instances of X map to "no" instances of Y.
- Such reductions have special name. They are called many-one reductions.

Many-one reduction

In order to show that $X \leq_p Y$ we design an efficient mapping f from the set of instances of X to set of instances of Y such that $s \in X$ iff $f(s) \in Y$.



NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

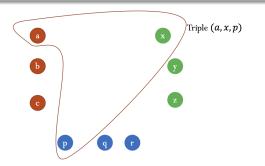


Figure: Let $T = \{(a, x, p), (a, y, p), (b, y, q), (c, z, r)\}$. Does there exist a 3D-Matching?

A 3 3 4

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

• <u>Claim 1</u>: 3D-MATCHING \in NP.

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

- Claim 1: 3D-MATCHING \in NP.
- <u>Claim 2</u>: 3D-MATCHING is NP-complete.

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

- Claim 1: 3D-MATCHING \in NP.
- <u>Claim 2</u>: 3D-MATCHING is NP-complete.
 - Claim 2.1: 3-SAT \leq_p 3D-MATCHING.
 - <u>Proof sketch of Claim 2.1</u>: We will show an efficient many-one reduction.

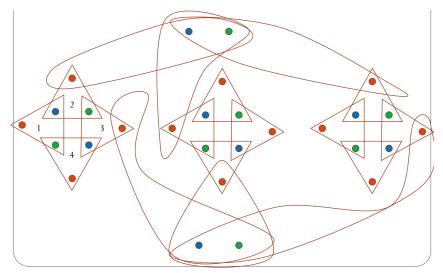


Figure: Example construction for $(x_1 \lor \bar{x}_2 \lor x_3), (\bar{x}_1 \lor x_2 \lor \bar{x}_3)$

Image: A image: A

NP-complete problems: 3D-Matching

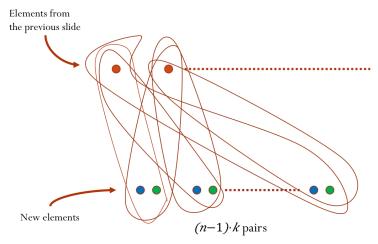


Figure: Example construction for $(x_1 \lor \bar{x}_2 \lor x_3), (\bar{x}_1 \lor x_2 \lor \bar{x}_3)$. k denotes the number of clauses.

- ▲ 同 ▶ - ▲ 三

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers $w_1, ..., w_n$ and a target number W, determine if there is a subset S of $\{1, ..., n\}$ such that $\sum_{i \in S} w_i = W$.

• <u>Claim 1</u>: SUBSET-SUM \in NP.

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers $w_1, ..., w_n$ and a target number W, determine if there is a subset S of $\{1, ..., n\}$ such that $\sum_{i \in S} w_i = W$.

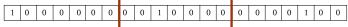
- <u>Claim 1</u>: SUBSET-SUM \in NP.
- <u>Claim 2</u>: SUBSET-SUM is NP-complete.

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers $w_1, ..., w_n$ and a target number W, determine if there is a subset S of $\{1, ..., n\}$ such that $\sum_{i \in S} w_i = W$.

- <u>Claim 1</u>: SUBSET-SUM \in NP.
- <u>Claim 2</u>: SUBSET-SUM is NP-complete.
 - <u>Claim 2.1</u>: 3D-MATCHING \leq_p SUBSET-SUM.
 - <u>Proof sketch</u>: We will show an efficient many-one reduction. Given an instance (X, Y, Z, T) of the 3D-MATCHING problem, we construct an instance of the SUBSET-SET problem.
 - We first construct a 3*n*-bit vector. Given a triple $t_i = (x_1, y_3, z_5)$, we construct the following vector v_i :



NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers $w_1, ..., w_n$ and a target number W, determine if there is a subset S of $\{1, ..., n\}$ such that $\sum_{i \in S} w_i = W$.

- <u>Claim 1</u>: SUBSET-SUM \in NP.
- Claim 2: SUBSET-SUM is NP-complete.
 - Claim 2.1: 3D-MATCHING \leq_p SUBSET-SUM.
 - <u>Proof sketch</u>: We will show an efficient many-one reduction. Given an instance (X, Y, Z, T) of the 3D-MATCHING problem, we construct an instance of the SUBSET-SET problem.
 - We first construct a 3*n*-bit vector. Given a triple $t_i = (x_1, y_3, z_5)$, we construct the following vector v_i :

	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0

- Let w_i be the value of v_i in base (|T|+1) and $W = \sum_{i=0}^{3n-1} (|T|+1)^i$.
- <u>Claim 2.1.1</u>: There is a 3D-Matching iff there is a subset $\{w_1, ..., w_{|T|}\}$ that sums to W.

End

Ragesh Jaiswal, CSE, IITD COL758: Advanced Algorithms

æ

990