There are 4 questions for a total of 100 points.

1. (20 points) Given an $n \times n$ matrix A, use a known SVD algorithm (given A, it outputs $n \times n$ matrices U, V, D such that $A=U D V^{T}$) to find a matrix B such that $B^{T} B=I$ and the cost function $\|A-B\|_{F}$ is minimised. Discuss the correctness of your algorithm.
2. (20 points) Suppose we flip the quantifiers in the statement of the JL theorem.
(JL Flipped) For any $0<\varepsilon<1$ and any integer n, let $k \geq \frac{3}{c \varepsilon^{2}} \ln n$ with c as in the Random Projection Theorem. The random projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ defined before has the property that for any set of n points in \mathbb{R}^{d}, for all pairs of points $\mathbf{v}_{\mathbf{i}}$ and $\mathbf{v}_{\mathbf{j}}$, with probability at least $\left(1-\frac{3}{2 n}\right)$,

$$
(1-\varepsilon) \sqrt{k}\left\|\mathbf{v}_{\mathbf{i}}-\mathbf{v}_{\mathbf{j}}\right\| \leq\left\|f\left(\mathbf{v}_{\mathbf{i}}\right)-f\left(\mathbf{v}_{\mathbf{j}}\right)\right\| \leq(1+\varepsilon) \sqrt{k}\left\|\mathbf{v}_{\mathbf{i}}-\mathbf{v}_{\mathbf{j}}\right\|
$$

Is the above statement true? Given reasons.
3. (30 points) The k-median problem is defined as follows: Given a set $X \subset \mathbb{R}^{d}$ in d-dimensional Euclidean space, find a set $C \subset \mathbb{R}^{d}$ of k points (called centers) such that the following cost function is minimised:

$$
\operatorname{cost}(X, C) \equiv \sum_{x \in X} \min _{c \in C}\|x-c\|
$$

Suppose there is an approximation scheme for the problem, which means that there is an algorithm A that takes as input the instance (X, k) and an error parameter $\varepsilon>0$ and outputs a $(1+\varepsilon)$-approximate solution. Suppose the running time of the algorithm A is $O\left(n k 2^{d}\right)$, where $n=|X|$. Can you improve the dependency of the running time on the dimension using the JL theorem? In other words, you are asked to design a faster approximation scheme. Discuss.
4. (30 points) Consider the hypothesis class of Linear Threshold Functions (LTFs) in \mathbb{R}^{d}. An LTF is defined using vectors $\mathbf{w}, \mathbf{b} \in \mathbb{R}^{d}$ with the label function being:

$$
f(\mathbf{x})= \begin{cases}1, & \text { if } \mathbf{w}^{T} \cdot \mathbf{x}+\mathbf{b}>0 \\ 0, & \text { otherwise }\end{cases}
$$

Show that the VC dimension of this concept class is $d+1$.

