- You may use any of the following known NP-complete problems to show that a given problem is NP-complete: 3-SAT, INDEPENDENT-SET, VERTEX-COVER, SET-COVER, HAMILTONIAN- CYCLE, HAMILTONIAN-PATH, SUBSET-SUM, 3-COLORING.

There are 6 questions for a total of 100 points.

1. ($P C P$ and Hardness of approximation) In this question, we will use r to denote the number of random bits and q the number of queries in the context of $\mathrm{PCP}_{c, s}(r, q)$. Moreover, c denotes completeness and s denotes soundness.
(a) (10 points) Recall that the PCP theorem says that $\mathrm{PCP}(O(\log n), 3)$ is the same as NP. Discuss the complexity of $\mathrm{PCP}(O(\log n), 2)$.
2. (PCP and Hardness of approximation) Using some slightly advanced machinery, the following PCP theorem variant has been shown.
Theorem 1: For every $\varepsilon>0$, NP $=\mathrm{PCP}_{1-\varepsilon, 1 / 2+\varepsilon}(O(\log n), 3)$. Moreover, the PCP verifier uses $O(\log n)$ random bits to compute three positions of the proof, i, j, k, and a bit b and accepts iff $y[i]+y[j]+y[k]=$ $b(\bmod 2)$. Here $y[i]$ denotes the $i^{t h}$ bit of the proof y.

Consider the following optimization problem:
Given m constraints in $n 0 / 1$ variables x_{1}, \ldots, x_{n}, find an assignment to the variables that maximises the number of satisfied constraints. Every $j^{\text {th }}$ constraint is of the form

$$
x_{j_{1}}+x_{j_{2}}+x_{j_{3}}=b_{j}(\bmod 2)
$$

Answer the following questions:
(a) (5 points) How hard is the problem when $m<n$?
(b) (5 points) Design a (1/2)-approximation algorithm for this problem.
(c) (5 points) Show that there cannot exist an efficient $\left(\frac{1}{2}+\varepsilon\right)$-approximation algorithm for this problem unless $\mathrm{P}=\mathrm{NP}$. Use Theorem 1 in your argument.
(d) (5 points) Use the previous part to argue that there cannot exist an efficient ($\frac{7}{8}+\varepsilon$)-approximation algorithm for the MAX-3-SAT problem unless $P=N P$. Recall that in the MAX-3-SAT problem, every clause has exactly three distinct literals and the goal is to maximise the number of satisfied clauses. Recall, we discussed a $\frac{7}{8}$-approximation algorithm for this problem in the class.
3. (20 points) (LP relaxation) Consider the problem of finding the maximum weight perfect matching in a weighted bipartite graph $G=(L, R, E)$ where $|L|=|R|$ and edge weights $w_{i j}$'s are positive integers. Here is an LP relaxation for this problem:

$$
\begin{aligned}
& \text { Maximise } \quad \sum_{i \in L, j \in R} w_{i j} \cdot x_{i j} \\
& \text { Subject to: } \\
& \qquad \sum_{j \in R} x_{i j}=1 \quad \text { for all } i \in L \\
& \quad \sum_{i \in L} x_{i j}=1 \quad \text { for all } j \in R \\
& 0 \leq x_{i j} \leq 1 \quad \text { for all } i \in L \text { and } j \in R
\end{aligned}
$$

Argue that there is an integer optimal solution for the above LP relaxation.
4. (20 points) (Randomized rounding) Consider the maximum cut problem on directed graphs. Given a directed graph $G=(V, E)$ with positive edge weights $w_{i j} \geq 0$ for every $(i, j) \in E$, partition the nodes V into sets (S, \bar{S}) such that the sum of the weight of edges from S to \bar{S} is maximised. Consider the following LP relaxation for this problem:

$$
\text { Maximise } \sum_{(i, j) \in E} w_{i j} \cdot x_{i j}
$$

Subject to:

$$
\begin{aligned}
& x_{i j} \leq y_{i} \quad \text { for all }(i, j) \in E \\
& x_{i j} \leq 1-y_{j} \quad \text { for all }(i, j) \in E \\
& 0 \leq y_{i} \leq 1 \quad \text { for all } i \in V \\
& 0 \leq x_{i j} \leq 1 \quad \text { for all }(i, j) \in E
\end{aligned}
$$

Let $\left(y^{*}, x^{*}\right)$ be an optimal solution to the above relaxed LP for the maxcut problem. Consider the cut created by randomly rounding, putting node i into S with probability $\left(\frac{1}{4}+\frac{y_{i}^{*}}{2}\right)$. Show that the expected weight of the cut so constructed is at least half the optimal cut weight.
5. ($L P$ duality) A zero-sum game between two players is defined using an $m \times n$ matrix A with a "row" player R and a "column" player C. Every row denotes a strategy of the row player R and every column denotes a strategy for the column player C. For the row player playing $1 \leq i \leq m$ and the column player playing $1 \leq j \leq n$, the "payoff" to the row player is $A[i, j]$ (i.e., if $A[i, j]$ is positive C pays $A[i, j]$ to R, otherwise, R pays $-A[i, j]$ to $C)$. The players can play a "mixed" strategy, instead of a "pure" one (i.e., picking a row/column), where they pick a probability distribution over the rows/columns and pick a row/column based on this probability distribution. For example, R can pick $\mathbf{x} \in \mathbb{R}^{n}$ with $\sum x_{i}=1$ and C can pick $\mathbf{y} \in \mathbb{R}^{n}$ with $\sum y_{i}=1$. In this case, the payoff to R from this mixed strategy is $\mathbf{x}^{T} A \mathbf{y}$. We can make the following observations about mixed strategies:

1. The best mixed strategy for R is given by: $\max _{\mathbf{x}} \min _{\mathbf{y}} \mathbf{x}^{T} A \mathbf{y}$
2. The best mixed strategy for C is given by: $\min _{\mathbf{y}} \max _{\mathbf{x}} \mathbf{x}^{T} A \mathbf{y}$

You will be asked to prove the following claim.
Claim 1: Show that for any fixed mixed strategy \mathbf{x} for $R, \min _{\mathbf{y}} \mathbf{x}^{T} A \mathbf{y}$ is attained for a pure strategy of C. Similarly, for any fixed mixed strategy \mathbf{y} for $C, \max _{\mathbf{x}} \mathbf{x}^{T} A \mathbf{y}$ is attained for a pure strategy of R.
Using the above claim, we get that:

1. The best mixed strategy for R is given by: $\max _{\mathbf{x}} \min _{j} \sum_{i=1}^{m} A[i, j] x_{i}$.
2. The best mixed strategy for C is given by: $\min _{\mathbf{y}} \max _{i} \sum_{j=1}^{n} A[i, j] y_{j}$.

We note that R 's best mixed strategy can be found by solving the following LP:

$$
\begin{aligned}
& \text { Maximise } z \\
& \text { Subject to: } \\
& \qquad z-\sum_{i=1}^{m} A[i, j] x_{i} \geq 0, \quad \text { for } j=1, \ldots, n \\
& \qquad \sum_{i=1}^{m} x_{i}=1 \\
& x_{i} \geq 0 \quad \text { for } i=1, \ldots, m
\end{aligned}
$$

You need to do the following for this question:
(a) (5 points) Prove claim 1.
(b) (5 points) Show that the dual of the above LP computes the best mixed strategy for C.

Using the duality theorem, we can now conclude that

$$
\max _{\mathbf{x}} \min _{\mathbf{y}} \mathbf{x}^{T} A \mathbf{y}=\min _{\mathbf{y}} \max _{\mathbf{x}} \mathbf{x}^{T} A \mathbf{y}
$$

This is called the von Neumann's minimax theorem for zero-sum games.
6. (Primal-dual) Consider the following problem defined on sets:

Given the set of elements $U=\{1, \ldots, n\}$ with associated non-negative weights w_{1}, \ldots, w_{n}. Also given are subsets T_{1}, \ldots, T_{m} of U, each of size at most γ. The goal is to find a subset $S \subseteq U$ of elements with minimum total weight such that for every $1 \leq j \leq m,\left|S \cap T_{j}\right| \geq 1$ (i.e., there is at least one element from every T_{j} in S).
(a) (5 points) Show that the problem is NP-hard for $\gamma \geq 2$.
(b) (15 points) Design an primal-dual based γ-approximation algorithm for this problem. Use ideas similar to those developed in class for the set cover problem. Discuss correctness and running time.

