
COL758: Advanced Algorithms (CSE, IITD, Semester-II-2022-23) Homework-1

• Homework solutions should be neatly written or typed and turned in through Gradescope
by 11:59 pm on the due date. No late homework will be accepted for any reason. You will be
able to look at your scanned work before submitting it. Please ensure that your submission
is legible (neatly written and not too faint), or your homework may not be graded.

• Students should consult their textbook, class notes, lecture slides, instructor, and TAs when
they need help with homework. Students should not look for answers to homework problems
in other texts or sources, including the internet. Only post about graded homework questions
on Piazza if you suspect a typo in the assignment or if you don’t understand what the question
is asking you to do.

• Your assignments in this class will be evaluated not only on the correctness of your answers
but on your ability to present your ideas clearly and logically. You should always explain
how you arrived at your conclusions using mathematically sound reasoning. Whether you
use formal proof techniques or write a more informal argument for why something is true,
your answers should always be well-supported. Your goal should be to convince the reader
that your results and methods are sound.

• For questions requiring pseudocode, you can follow the same format as we do in class or
write pseudocode in your style, as long as you specify your notation. For example, are you
using “=” to mean assignment or to check equality? You are welcome to use any algorithm
from class as a subroutine in your pseudocode. For example, if you want to sort list A using
InsertionSort, you can call InsertionSort(A) instead of writing out the pseudocode for
InsertionSort.

• You may use any of the following known NP-complete problems to show that a given
problem is NP-complete: 3-SAT, INDEPENDENT-SET, VERTEX-COVER, SET-COVER,
HAMILTONIAN- CYCLE, HAMILTONIAN-PATH, SUBSET-SUM, 3-COLORING.

There are 5 questions for a total of 100 points.

1. Show that the following problems that were discussed in class are NP-hard:

(a) (10 points) Minimum makespan

(b) (10 points) Dominating set

2. (20 points) Consider the following problem:

SPAN-TREE: Given an undirected graph G = (V,E), determine if there is a spanning tree of
G that has at most 10 leaves.

Either show that SPAN-TREE is NP-complete or give a polynomial time algorithm (along with correct-
ness proof and running time discussion).

3. (20 points) Consider the following problem:

F-SAT: Given a boolean formula in CNF form such that (i) each clause has exactly 3 terms
and (ii) each variable appears in at most 3 clauses (including in negated form), determine if
the formula is satisfiable.

Answer the following questions with respect to the above problem under the assumptions (i) P = NP,
and (ii) P 6= NP. Give reasons.

(a) Is F-SAT ∈ NP?

(b) Is F-SAT NP-complete?
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(c) Is F-SAT NP-hard?

(d) Is F-SAT ∈ P?

4. (20 points) Consider the following problem:

LONG-PATH: Given a weighted, directed graph G = (V,E), two vertices s, t ∈ V and a
number W , determine if there is a simple path between s and t such that the sum of weights
of edges in this path is ≥W .

Recall that a simple path is a path that does not have any vertices repeated. Either show that LONG-
PATH is NP-complete or give a polynomial time algorithm (along with correctness proof and running
time discussion).

5. Recall the Minimum Makespan problem discussed in class. We saw a greedy approximation algorithm
and showed an approximation guarantee of 2− 1

m . Consider the following slightly modified algorithm:

GreedySortMakespan

- Consider jobs in decreasing order of duration

- While all jobs are not assigned

- Assign the next job (as per the order defined) to a machine with the least load

Let OPT denote the value of an optimal solution, and G be the value of the above greedy solution. Then
we will argue that G ≤ (4/3) ·OPT . WLOG, let us assume that d(1) ≥ d(2) ≥ ... ≥ d(n).

Let us call a problem instance (d(1), ..., d(n)) nice if as per the above greedy algorithm, the job with
the maximum finishing time is n. We will first argue that it is sufficient to analyze the approximation
guarantee for nice instances.

Claim 1.1: If our greedy algorithm gives a factor c approximation for nice instances, then it gives factor
c approximation for all instances.

We can now focus on only nice instances. Again, for any nice instance, we use G to denote the value of
the greedy solution and OPT to denote the value of an optimal solution. Let us break the analysis into
two cases: (i) d(n) ≤ OPT/3, and (ii) d(n) > OPT/3. For case (i), we can make the following claim:

Claim 1.2: If d(n) ≤ OPT/3, then G ≤ (4/3) ·OPT .

Now, consider the case when d(n) > OPT/3. We first show that n ≤ 2m.

Claim 1.3: If d(n) > OPT/3, then n ≤ 2m.

Once we realize the above, the next thing we show is that, in this case, the greedy algorithm gives an
optimal solution.

Claim 1.4 If d(n) > OPT/3, then GreedySortMakespan returns an optimal solution.

Combining all the above claims, we get that the above greedy algorithm gives an approximation guarantee
of (4/3).

For this question, you have to answer the following:

(a) (5 points) Prove Claim 1.1

(b) (4 points) Prove Claim 1.2

(c) (1 point) Prove Claim 1.3

(d) (10 points) Prove Claim 1.4
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