1. All pairs shortest paths problem: Given a weighted, directed graph $G=(V, E)$, you are supposed to design an algorithm that outputs an $|V| \times|V|$ matrix A such that $A[i, j]$ contains the length of the shortest path in G from vertex i to vertex j.
(For example, the shortest path matrix for the graph given below is on the right.)

\left.| 1 | 2 | 3 | |
| :--- | :---: | :---: | :---: |
| | 1 | 0 | 1 |$\right] 2$

Figure 1: ∞ in a table entry $A[i, j]$ means that there is no path in the graph from vertex i to vertex j.

You can solve this problem using Dijkstra's algorithm (in case all edge weights are positive) repeatedly on the same graph and different starting vertices.
Question 1: What is the running time of the above algorithm?
We will design an algorithm with better running time using Dynamic Programming idea. For any i, j, k, let $D_{k}(i, j)$ denote the length of the shortest path from vertex i to vertex j when all the intermediate vertices in the path is from the set $\{1, \ldots, k\}$.
Given the above definition, we can say that that for all $i, j, D_{0}(i, j)=$ weight of edge (i, j) in case it exists, otherwise ∞.
Question 2: Write $D_{1}(.,$.$) in terms of D_{0}(.,$.$) .$
Question 3: Write $D_{i}(.,$.$) in terms of D_{i-1}(.,$.$) .$
Note that for the output matrix $A, A[i, j]=D_{n}(i, j)$ for all i, j. So, all we need to do is to figure out a way to compute $D_{n}(i, j)$ for all i, j. As evident from the recursive formulation in the previous question, we should compute $D_{i}(.,$.$) before computing D_{i-1}(.,$.$) . So, the algorithm runs in n$ passes and in the $i^{t h}$ pass it computes $D_{i}(j, k)$ for all j, k.
Question 4: What is the running time of the above algorithm? Is this better than running Dijkstra's repeatedly?
Question 5: Does this algorithm also work for graphs that have negative weight edges but no negative weight cycles?

Question 6: Consider the graph given below and simulate this algorithm on this graph. That is, fill the tables $D_{0}(.,),. D_{1}(.,),. \ldots, D_{4}(.,$.$) .$

2. You are given a bipartite graph $G=(L, R, E)$ such that $|L|=|R|=n$ and $|E|=m$. You are also given a matching $M \subseteq E$ such that $|M|=(n-1)$. Your goal is to design an algorithm that takes as input G and matching M and determines whether there exists a perfect matching in the graph G. That is, it should output "yes" if there is a perfect matching in G, otherwise it should output "no".

- There is a simple $O(n \cdot(n+m))$ algorithm for this problem that ignores the matching M. Discuss this algorithm and its running time.
- Design an $O(n+m)$ algorithm and discuss correctness and running time.

