1. <u>All pairs shortest paths problem</u>: Given a weighted, directed graph G = (V, E), you are supposed to design an algorithm that outputs an $|V| \times |V|$ matrix A such that A[i, j] contains the length of the shortest path in G from vertex i to vertex j.

(For example, the shortest path matrix for the graph given below is on the right.)

Figure 1: ∞ in a table entry A[i, j] means that there is no path in the graph from vertex i to vertex j.

You can solve this problem using Dijkstra's algorithm (in case all edge weights are positive) repeatedly on the same graph and different starting vertices.

Question 1: What is the running time of the above algorithm?

We will design an algorithm with better running time using Dynamic Programming idea. For any i, j, k, let $D_k(i, j)$ denote the length of the shortest path from vertex i to vertex j when all the intermediate vertices in the path is from the set $\{1, ..., k\}$.

Given the above definition, we can say that for all $i, j, D_0(i, j) =$ weight of edge (i, j) in case it exists, otherwise ∞ .

Question 2: Write $D_1(.,.)$ in terms of $D_0(.,.)$.

Question 3: Write $D_i(.,.)$ in terms of $D_{i-1}(.,.)$.

Note that for the output matrix A, $A[i,j] = D_n(i,j)$ for all i,j. So, all we need to do is to figure out a way to compute $D_n(i,j)$ for all i,j. As evident from the recursive formulation in the previous question, we should compute $D_i(.,.)$ before computing $D_{i-1}(.,.)$. So, the algorithm runs in n passes and in the i^{th} pass it computes $D_i(j,k)$ for all j,k.

Question 4: What is the running time of the above algorithm? Is this better than running Dijkstra's repeatedly?

Question 5: Does this algorithm also work for graphs that have negative weight edges but no negative weight cycles?

Question 6: Consider the graph given below and simulate this algorithm on this graph. That is, fill the tables $D_0(.,.), D_1(.,.), ..., D_4(.,.)$.

- 2. You are given a bipartite graph G = (L, R, E) such that |L| = |R| = n and |E| = m. You are also given a matching $M \subseteq E$ such that |M| = (n 1). Your goal is to design an algorithm that takes as input G and matching M and determines whether there exists a perfect matching in the graph G. That is, it should output "yes" if there is a perfect matching in G, otherwise it should output "no".
 - There is a simple $O(n \cdot (n+m))$ algorithm for this problem that ignores the matching M. Discuss this algorithm and its running time.
 - Design an O(n+m) algorithm and discuss correctness and running time.