
COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-II-2021-22) Tutorial-09

1. There is an n×n grid of one-way street network. At any intersection, you may either travel from west
to east or north to south. You want to compute the number of different ways in which you can travel
from the north-west corner to the south-east corner. We will develop a backtracking algorithm for this
problem.
(Below is an example of a 6×6 (i.e., n = 6). We are interested in finding the number of different ways
of going from the top-left corner to the bottom-right corner.)

Consider the following backtracking algorithm for this problem.

BacktrackGrid(n,m)

- if (n = 1 or m = 1)return(1)
- else return(BacktrackGrid(n− 1,m) + BacktrackGrid(n,m− 1))

NumPaths(n)
- BacktrackGrid(n, n)

Answer the following questions:

(a) Prove the correctness of the above algorithm.

(b) How many times is the function BacktrackGrid called when NumPaths(n) is executed?

(c) How many distinct recursive calls are made during the execution of the program? Is this polyno-
mial in n?

(d) Convert the backtracking algorithm into a dynamic programming algorithm using ideas discussed
in class. Discuss the running time of your algorithm.

2. You are given n types of coin denominations of values v[1] < v[2] < ... < v[n] (all integers). Assume
v[1] = 1, so you can always make change for any integer amount of money C. You want to make
change for C amount of money with as few coins as possible.

Answer the following questions:

(a) Show that the following greedy algorithm for this problem does not work.

GreedyCoinSelect(n, v[1...n], C)

- For i = n to 1

- m← b V
v[i]c

1 of 2



COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-II-2021-22) Tutorial-09

- g[i]← m

- C ← C −m · v[i]

- return(g[1], g[2], ..., g[n])

(b) Consider the following backtracking algorithm for this problem. Obtain a lower bound on the
running time of your algorithm.

BacktrackCoin(c)
- if (c = 0)return(0)
- m← c
- for i = 1 to n:

- if (v[i] ≤ c)m← min (m, 1 + BacktrackCoin(c− v[i]))
- return(m)

MinCoins(n, v[1...n], C)

- BacktrackCoin(C)

(c) How many distinct recursive calls are made during the execution of the program? Is this polyno-
mial in n and C?

(d) Convert the backtracking algorithm into a dynamic programming algorithm using ideas discussed
in class. Discuss the running time of your algorithm.

2 of 2


