
COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-II-2021-22) Tutorial-08

1. One ordered pair v = (v1, v2) dominates another ordered pair u = (u1, u2) if v1 ≥ u1 and v2 ≥ u2.
Given a set S of ordered pairs, an ordered pair u ∈ S is called Pareto optimal for S if there is no
v ∈ S such that v dominates u. Give an efficient algorithm that takes as input a list of n ordered pairs
and outputs the subset of all Pareto-optimal pairs in S. Provide a proof of correctness along with the
runtime analysis.

Solution:

Algorithm Description: Given an input of (x1, y1), . . . , (xn, yn), if n = 1, return the sin-
gle ordered pair (x1, y1), otherwise sort the ordered pairs by their x values. Use the y val-
ues as a secondary key to break ties in x values. Let m = bn/2c and split the input into
L = (x1, y1), . . . , (xm, ym) and U = (xm+1, ym+1), . . . , (xn, yn). Then recursively find PL,PU ,
the pareto max subset of L,U , recursively. Then let yU be the maximum y value of U and let
PLy be all the ordered pairs in PL that have a larger y value than yU . Then return PLy ∪ PU .

Correctness: The base case works. Since all x values of L are lower than all x values in U , this
means that there are no ordered pairs in L that dominate any ordered pair in U so all ordered
pairs in the pareto max subset of U , PU must also be in the pareto max subset of the original
input. Each ordered pair in PL has a lower x value than all ordered pairs in U so in order for an
ordered pair in PL to be in the pareto max of the original set, it must have a higher y value than
all ordered pairs of U . So, PLy is the set of all ordered pairs in PL that have a larger y value
than all the ordered pairs in U .

Runtime: There is the cost of sorting. But this can be done as a preprocessing step. Then in
the algorithm there are 2 recursive calls each of size n/2 and the non-recursive part of finding the
max y value of U and finding all ordered pairs in PL that have a larger y value than the largest
y value of U all can be done in O(n). So this recursion has a = 2, b = 2, d = 1 and the algorithm
will take O(n log(n)).

2. Given a sequence of integers (positive or negative) in an array A[1...n], the goal is to find a subsection
of this array such that the sum of integers in the subsection is maximized. A subsection is a contiguous
sequence of indices in the array. (For example, consider the array and one of its subsection below. The
sum of integers in this subsection is −1.)

Let us call a subsection that maximizes the sum of integers, a maximum subsection. Design a divide
and conquer algorithm with O(n log n) running time to output the sum of integers in a maximum
subsection of a given array A. Give pseudocode and discuss running time.

1 of 1


