1. One ordered pair $v=\left(v_{1}, v_{2}\right)$ dominates another ordered pair $u=\left(u_{1}, u_{2}\right)$ if $v_{1} \geq u_{1}$ and $v_{2} \geq u_{2}$. Given a set S of ordered pairs, an ordered pair $u \in S$ is called Pareto optimal for S if there is no $v \in S$ such that v dominates u. Give an efficient algorithm that takes as input a list of n ordered pairs and outputs the subset of all Pareto-optimal pairs in S. Provide a proof of correctness along with the runtime analysis.

Solution:

Algorithm Description: Given an input of $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, if $n=1$, return the single ordered pair $\left(x_{1}, y_{1}\right)$, otherwise sort the ordered pairs by their x values. Use the y values as a secondary key to break ties in x values. Let $m=\lfloor n / 2\rfloor$ and split the input into $L=\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ and $U=\left(x_{m+1}, y_{m+1}\right), \ldots,\left(x_{n}, y_{n}\right)$. Then recursively find $P L, P U$, the pareto max subset of L, U, recursively. Then let $y U$ be the maximum y value of U and let $P L y$ be all the ordered pairs in $P L$ that have a larger y value than $y U$. Then return $P L y \cup P U$.
Correctness: The base case works. Since all x values of L are lower than all x values in U, this means that there are no ordered pairs in L that dominate any ordered pair in U so all ordered pairs in the pareto max subset of $U, P U$ must also be in the pareto max subset of the original input. Each ordered pair in $P L$ has a lower x value than all ordered pairs in U so in order for an ordered pair in $P L$ to be in the pareto max of the original set, it must have a higher y value than all ordered pairs of U. So, $P L y$ is the set of all ordered pairs in $P L$ that have a larger y value than all the ordered pairs in U.

Runtime: There is the cost of sorting. But this can be done as a preprocessing step. Then in the algorithm there are 2 recursive calls each of size $n / 2$ and the non-recursive part of finding the max y value of U and finding all ordered pairs in $P L$ that have a larger y value than the largest y value of U all can be done in $O(n)$. So this recursion has $a=2, b=2, d=1$ and the algorithm will take $O(n \log (n))$.
2. Given a sequence of integers (positive or negative) in an array $A[1 \ldots n]$, the goal is to find a subsection of this array such that the sum of integers in the subsection is maximized. A subsection is a contiguous sequence of indices in the array. (For example, consider the array and one of its subsection below. The sum of integers in this subsection is -1 .)

Subsection with sum -1
Let us call a subsection that maximizes the sum of integers, a maximum subsection. Design a divide and conquer algorithm with $O(n \log n)$ running time to output the sum of integers in a maximum subsection of a given array A. Give pseudocode and discuss running time.

