1. This is a recap. of a few proof techniques that you studied in the Discrete Mathematics course. We will use the following definition of even and odd numbers in the example problems that follow:

Odd/even numbers: An integer n is called even iff there exists an integer k such that $n=2 k$.
An integer n is called odd iff there exists an integer k such that $n=2 k+1$.

- Direct proof: Used for showing statements of the form p implies q. We assume that p is true and use axioms, definitions, and previously proven theorems, together with rules of inference, to show that q must also be true.
- Give a direct proof of the statement: "If n is an odd, then n^{2} is odd".
- Proof by contraposition: Used for proving statements of the form p implies q. We take $\neg q$ as a premise, and using axioms, definitions, and previously proven theorems, together with rules of inference, we show that $\neg p$ must follow.
- Prove by contraposition that "if n^{2} is odd, then n is odd".
- Proof by contradiction: Suppose we want to prove that a statement p is true and suppose we can find a contradiction q such that $\neg p$ implies q. Since q is false, but $\neg p$ implies q, we can conclude that $\neg p$ is false, which means that p is true. The contradiction q is usually of the form $r \wedge \neg r$ for some proposition r.
- Give a proof by contradiction of the statement: "at least four of any 22 days must fall on the same day of the week"
- Counterexample: Suppose we want to show that the statement for all $x, P(x)$ is false. Then we only need to find a counterexample, that is, an example x for which $P(x)$ is false.
- Show that the statement "Every positive integer is the sum of squares of two integers" is false.
- Mathematical Induction: This was discussed in the lecture.
- Show using induction that for all positive integer $n, 1+2+3+\ldots+n=n \cdot(n+1) / 2$.
- Show using induction that for all positive integers $n, 1+2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-1$.

2. Solve the following recurrence relation and give the exact value of $T(n)$.

$$
T(n)= \begin{cases}T(n-1) & \text { if } n>1 \text { and } n \text { is odd } \\ 2 \cdot T(n / 2) & \text { if } n>1 \text { and } n \text { is even } \\ 1 & \text { if } n=1\end{cases}
$$

\qquad

Solution: The answer follows from the following claim.

Proof. We show this by induction on k. Let $P(k)$ denote the given proposition in the claim. We need to show that $\forall k, P(k)$ is true.
Base step: $P(0)$ holds since $T(1)=1$.
Inductive step: Suppose $P(0), P(1), P(2), \ldots, P(i)$ are true. We will show that $P(i+1)$ is true. $\overline{\text { Consider any }} 2^{i+1} \leq n<2^{i+2}$. We need to consider the case when n is even and n is odd.
If n is odd, then $T(n)=T(n-1)=2 \cdot T\left(\frac{n-1}{2}\right)$. Note that $2^{i+1} \leq n-1<2^{i+2}$. So, we have $2^{i} \leq(n-1) / 2<2^{i+1}$. Applying induction hypothesis, we get $T(n)=2^{i+1}$.
If n is even, then $T(n)=2 \cdot T(n / 2)$. Since $2^{i+1} \leq n<2^{i+2}$, we have $2^{i} \leq n / 2<2^{i+1}$. Applying induction hypothesis, we get that $T(n)=2^{i+1}$.
3. Consider functions $f(n)=10 n 2^{n}+3^{n}$ and $g(n)=n 3^{n}$.

Prove or disprove: $g(n)$ is $O(f(n))$

Solution: We will show that the statement is false.
Let us first recall the definition of big- O : For functions $h_{1}(n)$ and $h_{2}(n), h_{1}(n)$ is $O\left(h_{2}(n)\right)$ iff there exists constants $c>0, n_{0}>0$ such that for all $n \geq n_{0} h_{1}(n) \leq c \cdot h_{2}(n)$. So, $h_{1}(n)$ is not $O\left(h_{2}(n)\right)$ iff for all constants $c>0, n_{0}>0$, there exists $n \geq n_{0}$ such that $h_{1}(n)>c \cdot h_{2}(n)$.

Note that $(1 / 2) n 3^{n}>c \cdot 3^{n}$ when $n>2 c$ for any constant $c>0$. Moreover, note that $(1 / 2) n 3^{n}>$ (c) $10 n 2^{n} \Leftrightarrow(3 / 2)^{n}>20 c \Leftrightarrow n>\log _{3 / 2}(20 c)$.

Combining the previous two statements, we get that for any constant $c>0, n 3^{n}>c \cdot\left(10 n 2^{n}+3^{n}\right)$ when $n>\max \left(2 c, \log _{3 / 2} 20 c\right)$. This further implies that for any constants $c>0, n_{0} \geq 0, n^{\prime} 3^{n^{\prime}}>$ $c \cdot\left(10 n^{\prime} 2^{n^{\prime}}+3^{n^{\prime}}\right)$ for $n^{\prime}=\max \left(\lceil 2 c\rceil+1,\left\lceil\log _{3 / 2} 20 c\right\rceil+1, n_{0}\right)$. Note that $n^{\prime} \geq n_{0}$. So, for any constants $c>0, n_{0}>0$, there is a number $n \geq n_{0}\left(n^{\prime}\right.$ above is such a number) such that $n 3^{n}>c \cdot\left(10 n 2^{n}+3^{n}\right)$. This implies that $g(n)$ is not $O(f(n))$.

