
Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL351: Slides for Lecture Component 17

DIVIDE AND CONQUER

Divide and Conquer
• Break a problem into similar subproblems
• Solve each subproblem recursively
• Combine

Above its weight class
• Divide and conquer is a very simple idea
• But it has far more than its share of the miraculous

algorithms
• Examples
• Strassen Matrix Multiplication
• Karatsuba multiplication
• Fast Fourier Transform
• Linear time select

Multiplying Binomials
• if you want to multiply two binomials
• 𝑎𝑥 + 𝑏 𝑐𝑥 + 𝑑 = 𝑎𝑐𝑥! + 𝑎𝑑𝑥 + 𝑏𝑐𝑥 + 𝑏𝑑
• It 4 multiplications. 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑

Multiplying Binomials
• if you want to multiply two binomials
• 𝑎𝑥 + 𝑏 𝑐𝑥 + 𝑑 = 𝑎𝑐𝑥! + (𝑎𝑑 + 𝑏𝑐)𝑥 + 𝑏𝑑
• It requires 4 multiplications. 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑

• If we assume that addition is cheap (has short runtime.)
Then we can improve this by only doing 3 multiplications:

𝑎𝑐, 𝑏𝑑, (𝑎 + 𝑏)(𝑐 + 𝑑)

Multiplying Binomials
• Reducing the number of multiplications from 4 to 3 may

not seem very impressive when calculating asymptotics.

• If this was only a part of a bigger algorithm, it may be an
improvement.

Multiplying Binary numbers

Divide and conquer multiply
• Say we want to multiply 10100110 and 10110011

• How can we divide the problem into sub-problems?
• Remember, we want much smaller sub-problems

Multiplying large binary numbers

• 10100110 = 166= 1010 * 2" + 0110 = 10*16 + 6
• 10110011 = 179= 1011*2" + 0011 = 11*16 + 3
• 10100110*10110011 = (10*16+6)(11*16+3)= 110*256 +

6*11*16 + 3*10*16 + 3*6

Multiplying Binary numbers (DC)
• Suppose we want to multiply two n-bit numbers together

where n is a power of 2.
• One way we can do this is by splitting each number into

their left and right halves which are each n/2 bits long

• x=
• y=

xL xR

yL yR

Multiplying Binary numbers (DC)
• Suppose we want to multiply two n-bit numbers together

where n is a power of 2.
• One way we can do this is by splitting each number into

their left and right halves which are each n/2 bits long

• 𝑥 = 2#/!𝑥𝐿 + 𝑥%
• 𝑦 = 2#/!𝑦𝐿 + 𝑦%

Multiplying Binary numbers (DC)
𝑥 = 2#/!𝑥& + 𝑥%
𝑦 = 2#/!𝑦& + 𝑦%

• 𝑥𝑦 = 2
!
"𝑥& + 𝑥% 2

!
"𝑦& + 𝑦%

• 𝑥𝑦 = 2#𝑥&𝑦& + 2
!
" 𝑥&𝑦% + 𝑥%𝑦& + 𝑥%𝑦%

Algorithm multiply
• function multiply (x,y):
• Input: n-bit integers x and y
• Output: the product xy
• If n=1: return xy
• 𝑥#, 𝑥$ and 𝑦#, 𝑦$ are the left-most and right-most n/2 bits of x and y,

respectively.
• 𝑃% = 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐲 𝑥#, 𝑦#
• 𝑃& = 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐲 𝑥#, 𝑦$
• 𝑃' = 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐲 𝑥$, 𝑦#
• 𝑃(= 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐲 𝑥$, 𝑦$
• return (𝑃% ∗ 2) + 𝑃& + 𝑃' ∗ 2

!
" + 𝑃()

Algorithm
• Runtime analysis:
• Let T(n) be the runtime of the multiply algorithm.

• Then 𝑇 𝑛 = 4𝑇 !
"
+ 𝑂(𝑛)

Total time
n bits, cn time

n/2 bits ,
cn/2 time

n/2 bits ,
cn/2 time

n/2 bits,
cn/2 time

n/4n/4n/4 n/4 n/4 n/4 n/4

n/2 bits,
cn/2 time

n/4

Total
• One top level : cn
• 4 depth 1: cn/2 *4
• 16 depth 2: cn/4 * 16
• 64 depth 3: cn/8 * 64
….
• 4" 𝑑𝑒𝑝𝑡ℎ 𝑡 ∶ #$

%!
∗ 4" = 𝑐𝑛 ∗ 2"

….
• Max level : t= log n, (cn/2log n)*4&'($ = 𝑐 ∗ 2&'($ ∗ 2&'($ = 𝑐𝑛%

Total time
• cn (1+ 2 +4 +8+…2'()#) = 𝑂 𝑐𝑛!

• Because in a geometric series with ratio other than 1,
largest term dominates order.

Multiplication

Insight: replace
one (of the 4)

multiplications by
(linear time)
subtraction

Algorithm multiply KS
• function multiplyKS (x,y)
• Input: n-bit integers x and y
• Output: the product xy
• If n=1: return xy
• 𝑥#, 𝑥$ and 𝑦#, 𝑦$ are the left-most and right-most n/2 bits of x and y,

respectively.
• 𝑅% = 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐲𝐊𝐒 𝑥#, 𝑦#
• 𝑅& = 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐲𝐊𝐒 𝑥$, 𝑦$
• 𝑅' = 𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐲𝐊𝐒 (𝑥#+𝑥$), 𝑦# + 𝑦$
• return (𝑅% ∗ 2) + 𝑅' − 𝑅% − 𝑅& ∗ 2

!
" + 𝑅&)

Correctness multiply KS
• Correctness: by strong induction on 𝑛, the number of bits

of x and y.
• Base Case: 𝑛 = 1 then return xy (could make a table of

possibilities.)
• Inductive hypothesis:

Correctness multiply KS
• Correctness: by strong induction on 𝑛, the number of bits of x

and y.
• Base Case: 𝑛 = 1 then return xy (could make a table of

possibilities.)
• Inductive hypothesis: For some 𝑛 > 1, assume that
multiplyKS(x,y) returns the correct product xy whenever x has
𝑘 digits and 𝑦 has 𝑘 digits for any 1 ≤ 𝑘 < 𝑛.

• Then by the IH: 𝑅) = 𝑥*𝑦*, 𝑅% = 𝑥+𝑦+ , 𝑅, = 𝑥* + 𝑥+ 𝑦* + 𝑦+

Correctness multiply KS
• Then by the IH:
• 𝑅! = 𝑥"𝑦" , 𝑅# = 𝑥$𝑦$, 𝑅% = 𝑥" + 𝑥$ 𝑦" + 𝑦$ = 𝑥"𝑦" + 𝑥$𝑦$ + 𝑥"𝑦$ + 𝑥$𝑦"

• And the algorithm returns:𝑅" ∗ 2# + 𝑅$ − 𝑅" − 𝑅% ∗ 2
!
" + 𝑅%

𝑅# ∗ 2! + 𝑅$ − 𝑅# − 𝑅" ∗ 2
!
" + 𝑅" =

𝑥%𝑦% ∗ 2! + (𝑥%𝑦& + 𝑥&𝑦%) ∗ 2
&
' + 𝑥&𝑦& =

𝑥% ∗ 2
!
" + 𝑥& 𝑦% ∗ 2

!
" + 𝑦& =

𝑥𝑦

Algorithm multiplyKS
• Runtime
• Let T(n) be the runtime of the multiply algorithm.

• Then

• 𝑇 𝑛 = 3𝑇 #
!
+ 𝑂(𝑛)

Total time
n bits, cn time

n/2 bits ,
cn/2 time

n/2 bits,
cn/2 time

n/4n/4 n/4 n/4 n/4

n/2 bits,
cn/2 time

n/4

3 vs 4
• Since we are pruning the tree recursively, replacing 4

recursive calls instead of 3 reduces the size of the tree
more than a constant factor.

Total
• One top level : cn
• 4 depth 1: cn/2 *3
• 16 depth 2: cn/4 * 9
• 64 depth 3: cn/8 * 27
….
• 4/ 𝑑𝑒𝑝𝑡ℎ 𝑡 ∶ 0#!* ∗ 3

/ = 𝑐𝑛 ∗ (1.5)/

….
• Max level : t= log n

Total time
• cn (1+ 1.5 +2.25 +…(1.5)'()#) = 𝑂 3'()#

• Because in a geometric series with ratio other than 1,
largest term dominates order.

• But what is 3'()#?

Simplifying
• 3'() ! = 2*+,$ *+,! = 2 *+,!∗*+,$ = 2 *+,! *+,$

= 𝑛*+,$ = 𝑛{#.01… }

• So total time is 𝑂 𝑛*+,$

Master Theorem
• How do you solve a recurrence of the form

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑂 𝑛1

We will use the master theorem.

