COL351: Slides for Lecture Component 17

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.




DIVIDE AND CONQUER
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Divide and Conquer

- Break a problem into similar subproblems
- Solve each subproblem recursively
- Combine



Above its weight class

Divide and conquer is a very simple idea

But it has far more than its share of the miraculous
algorithms

Examples
Strassen Matrix Multiplication
Karatsuba multiplication

Fast Fourier Transform
Linear time select
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Multiplying Binomials

- if you want to multiply two binomials
- (ax + b)(cx + d) = acx? + adx + bcx + bd
- It requires ? 4 multiplications. ac, ad, bc, bd



Multiplying Binomials

if you want to multiply two binomials
(ax + b)(cx + d) = acx? + (ad + bc)x + bd
It requires 4 multiplications. ac, ad, bc, bd

If we assume that addition is cheap (has short runtime.)
Then we can improve this by only doing 3 multiplications:
ac,bd, (a+ b)(c +d)



Multiplying Binomials
Reducing the number of multiplications from 4 to 3 may

not seem very impressive when calculating asymptotics.

If this was only a part of a bigger algorithm, it may be an
Improvement.
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Multiplying Binary numbers
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Divide and conquer multiply
Say we want to multiply 10100110 and 10110011

How can we divide the problem into sub-problems?
Remember, we want much smaller sub-problems



Multiplying large binary numbers

10100110 = 166= 1010 * 2* + 0110 = 10*16 + 6
10110011 = 179= 1011*2* + 0011 = 11*16 + 3

10100110*10110011 = (10*16+6)(11*16+3)= 110*256 +
6*11*16 + 3*10*16 + 3*6
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Multiplying Binary numbers (DC)

- Suppose we want to multiply two n-bit numbers together
where n is a power of 2.

- One way we can do this is by splitting each number into
their left and right halves which are each n/2 bits long



Multiplying Binary numbers (DC)

Suppose we want to multiply two n-bit numbers together
where n is a power of 2.

One way we can do this is by splitting each number into
their left and right halves which are each n/2 bits long

x = 2™2x, + xp

y =2"2y, + yp
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Multiplying Binary numbers (DC)

x =2™2x; + xp
y =2"2y, + yg

"Xy = (ngL + xR) (ZEYL + YR)

- xy = 2"xyy; + 22(x yp + XgYL) + XRVR



Algorithm multiply

function multiply (x,y):
Input. n-bit integers x and y
Output: the product xy

If n=1: return xy

x;,xg and y;, yp are the left-most and right-most n/2 bits of x and vy,
respectively.

P; = multiply(x;, y;)
P, = multiply(x;, yz)
P; = multiply(xg, y;)
P, = multiply(xz, yz)
return (P; = 2™ + (P, + P3) * 23 + P,)
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Algorithm

- Runtime analysis:
- Let T(n) be the runtime of the multiply algorithm.

- Then T(n) = 4T (3) + 0(n)



Total time

n/4 n/4 n/4 n/4 ma



L
Total

- One top level : cn
-4 depth 1:¢cn/2 *4

- 16 depth 2: cn/4 * 16
- 64 depth 3: cn/8 * 64

-4tdeptht:;—?*4t=cn*2t

- Max level : t=log n, (cn/209n)*4logn = ¢ x plogn  plogn — cp?2



Total time

-on (1+ 2 +4 +8+...2199™) = 0(cn?)

- Because in a geometric series with ratio other than 1,
largest term dominates order.
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Multiplication

Insight: replace
one (of the 4)
multiplications by
(linear time)
subtraction

Andrey Kolmogorov 1903 - 1987 Anatoly Karatsuba 1937 - 2008



Algorithm multiply KS

function multiplyKsS (x,y)
Input. n-bit integers x and y
Output: the product xy

If n=1: return xy

x;,xg and y;, yp are the left-most and right-most n/2 bits of x and vy,
respectively.

R; = multiplyKS(x;,y;)

R, = multiplyKS(xg, yr)

R; = multiplyKS((x,+xg), (v, + yr))
return (Ry * 2" + (R3 — R{ — Ry) * 2% + R,)



Correctness multiply KS

Correctness: by strong induction on n, the number of bits
of x and y.

Base Case: n = 1 then return xy (could make a table of
possibilities.)

Inductive hypothesis:



Correctness multiply KS

Correctness: by strong induction on n, the number of bits of x
and y.

Base Case: n = 1 then return xy (could make a table of
possibilities.)

Inductive hypothesis: For some n > 1, assume that
multiplyKS(x,y) returns the correct product xy whenever x has
k digits and y has k digits forany 1 < k < n.

Then by the IH: Ry = x;v;, Ry = xpVr, Rz = (x; + x2) (v, + Vr)



Correctness multiply KS
- Then by the IH:

* Ry = x1y1, Ry = xgYr, Rz = (xy +xp)(yp + Yr) = XY + XgYr + X1 VR + XYL

- And the algorithm returns:gr, 2 + (R; — R, — R,) * 22 + R,
n
R1*2n+(R3_R1—R2)*2§+R2 =

xpyp * 2"+ (xpyr + XgyL) * 22 + xgyg =

n

(xL x 22 + xR) (yL * 2% + YR) =
xy
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Algorithm multiplyKS

- Runtime
- Let T(n) be the runtime of the multiply algorithm.

- Then
- T(n) =3T (g) + 0(n)



Total time




L
3vs4

- Since we are pruning the tree recursively, replacing 4
recursive calls instead of 3 reduces the size of the tree
more than a constant factor.
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Total

- One top level : cn

-4 depth 1:¢cn/2*3

- 16 depth 2: cn/4 * 9
- 64 depth 3: cn/8 * 27

ctn

-4t deptht : — 3t = cn = (1.5)¢

21:

- Max level : t=log n



Total time

con (1+ 1.5 42.25 +...(1.5)109m) = 0 (3lo9m)

- Because in a geometric series with ratio other than 1,
largest term dominates order.

- But what is 3!09m?
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Simplifying

glogn — (zlogS)IOQn — ollogn+log3} — (2{logn})1093 — nlog3 — ,{158..}

- So total time is 0(n'°93)
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Master Theorem

- How do you solve a recurrence of the form
n
_ = d
T(n) = aT (b) + O(n )

We will use the master theorem.



