
Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL351: Slides for Lecture Component 15

A spanning tree of an undirected graph 𝐺 =
(𝑉, 𝐸) is a subgraph 𝐺′ = (𝑉, 𝐸′) such that 𝐺′
is a tree and all vertices in 𝑉 are connected.

An output tree of DFS or BFS is a spanning
tree.

SPANNING TREES

Suppose you have a network of computers that were linked pairwise

Suppose each link has a positive maintenance cost.
Your job is to keep some links so that the cost of the network is
minimized and the network stays connected.

Or each edge is a potential road, with the cost to build it, and you want
to be able to drive to any location

EXAMPLE

When is a connected undirected graph NOT a tree?

THE MINIMIZED GRAPH IS A TREE

When is a connected undirected graph NOT a tree?

When it has a cycle.

If the subgraph has a cycle, dropping any edge makes a cheaper
connected subgraph.
So the minimum cost connected sub-graph is always a tree

THE MINIMIZED GRAPH IS A TREE

EXAMPLE

A

F

B

E

C

D

2

6
3

2
4

4

3

4

1

Greedy rule: which edge should we pick first?

EXAMPLE

A

F

B

E

C

D

2

6
3

2
4

4

3

4

1

Greedy rule: which edge should we pick first?

Pick the smallest weight edge

EXAMPLE

A

F

B

E

C

D

2

6
3

2
4

4

3

4

1

Greedy rule: which edge should we pick first?

Pick the smallest weight edge

EXAMPLE

A

F

B

E

C

D

2

6
3

2
4

4

3

4

1

Greedy rule: which edge should we pick first?

Pick the smallest weight edge

EXAMPLE

A

F

B

E

C

D

2

6
3

2
4

4

3

4

1

Greedy rule: which edge should we pick first?
Pick the smallest weight edge unless its vertices are
already connected

EXAMPLE

A

F

B

E

C

D

2

6
3

2
4

4

3

4

1

Greedy rule: which edge should we pick first?
Pick the smallest weight edge unless its vertices are
already connected

Start with a graph with only the vertices.
Repeatedly add the next lightest edge that does not form a cycle.

KRUSKAL’S ALGORITHM FOR FINDING THE MINIMUM
SPANNING TREE

Let 𝑒 be the smallest weight edge, 𝑂𝑇 a spanning tree that does not
contain 𝑒. Then there is another spanning tree 𝑂𝑇′ that contains 𝑒, with
𝐶𝑜𝑠𝑡(𝑂𝑇′) ≤ 𝐶𝑜𝑠𝑡(𝑂𝑇)

CORRECTNESS PROOF, MODIFY-THE-SOL’N

𝑒

Let 𝑒 be the smallest weight edge, 𝑂𝑇 a spanning tree that does not
contain 𝑒. Then there is another spanning tree 𝑂𝑇′ that contains 𝑒, with
𝐶𝑜𝑠𝑡(𝑂𝑇′) ≤ 𝐶𝑜𝑠𝑡(𝑂𝑇)

𝑒 = {𝑢, 𝑣}, 𝑢 must be connected to 𝑣 in OT

CORRECTNESS PROOF, MODIFY-THE-SOL’N

v
𝑒

Let 𝒑 be the path from 𝑢 to 𝑣 in 𝑂𝑇, and let 𝑒′ be any edge in that path

u

v

𝑒′

Let 𝑒 be the smallest weight edge, 𝑂𝑇 a spanning tree that does not
contain 𝑒. Then there is another spanning tree 𝑂𝑇′ that contains 𝑒, with
𝐶𝑜𝑠𝑡(𝑂𝑇′) ≤ 𝐶𝑜𝑠𝑡(𝑂𝑇)

𝑒 = {𝑢, 𝑣}, 𝑢 must be connected to 𝑣 in 𝑂𝑇

CORRECTNESS PROOF, DEFINE OT’

v
e

u

v

e’

Let 𝑂𝑇′ = 𝑂𝑇 + 𝑒 – 𝑒′

CORRECTNESS PROOF, OT’ IS SPANNING TREE

v
e

u

v

𝑒′

Let 𝑂𝑇′ = 𝑂𝑇 + 𝑒 – 𝑒′

w

Let 𝑒′ = {𝑢, 𝑤}. Then the path 𝑝 is of the form 𝑒′, 𝑝′

where 𝑝′ is a path from 𝑤 to 𝑣

So since we can simulate any path in 𝑂𝑇 with a path in 𝑂𝑇′, and 𝑂𝑇 was connected,
𝑂𝑇′ is still connected

To simulate 𝑒′, we can take the following path in 𝑂𝑇′: 𝑒, 𝑝′ in reverse

Let 𝑒 be the smallest weight edge, 𝑂𝑇 a spanning tree that does not
contain 𝑒. Then there is another spanning tree 𝑂𝑇′ that contains 𝑒, with
𝐶𝑜𝑠𝑡(𝑂𝑇′) ≤ 𝐶𝑜𝑠𝑡(𝑂𝑇)

𝑤(𝑒) ≤ 𝑤(𝑒′)

CORRECTNESS PROOF: COMPARE COSTS

v
e

u

v

e;

Let 𝑂𝑇′ = 𝑂𝑇 + 𝑒 − 𝑒′

So 𝐶𝑜𝑠𝑡(𝑂𝑇′) = 𝐶𝑜𝑠𝑡(𝑂𝑇) − 𝑤(𝑒′) + 𝑤(𝑒) ≤ 𝐶𝑜𝑠𝑡(𝑂𝑇)

If 𝐺 has at most two vertices, any solution is optimal
Assume Kruskal is optimal for any graph with 𝑛 − 1 vertices
Let 𝑒 be the smallest weight edge
𝐺′: Contract the edge 𝑒 in 𝐺 , treating its two vertices as one vertex

INDUCTION STEP

CONTRACTION

e

CONTRACTION

single
vertex

Contracted graph is not necessarily simple

If 𝐺 has at most two vertices, any solution is optimal
Assume Kruskal is optimal for any graph with (𝑛 − 1) vertices
Let 𝑒 be the smallest weight edge
𝐺′: Contract the edge 𝑒 in 𝐺 , treating its two vertices as one vertex
Kruskal(𝐺) = 𝑒 + Kruskal(𝐺′)
𝑂𝑇′ = 𝑒 +some spanning tree in 𝐺′
Therefore,
Cost (Kruskal(𝐺)) =

Cost(Kruskal(𝐺′)) + 𝑤(𝑒) ≤
Cost(spanning tree in 𝐺′) + 𝑤(𝑒) =
Cost(𝑂𝑇′)≤ Cost(𝑂𝑇)

INDUCTION STEP

EXAMPLE

Sort edges by weight, go through from smallest to largest, and add if it
does not create cycle with previously added edges
How do we tell if adding an edge will create a cycle?
Naive : DFS every time
Need to test for every edge, 𝑚 times

DFS on a forest: only edges added to MST searched
Thus, each DFS is 𝑂(𝑛).
Total time 𝑂(𝑛𝑚)

HOW TO IMPLEMENT KRUSKAL’S

How to implement Kruskal’s algorithm faster
Data structures for disjoint sets

Leading into : Amortized analysis.

NEXT TIME

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL351: Slides for Lecture Component 16

Start with a graph with only the vertices.
Repeatedly add the next lightest edge that does not form a cycle.

KRUSKAL’S ALGORITHM FOR FINDING THE MINIMUM
SPANNING TREE

A

B

C

D E F

G

1

2

22

2

2

3 4

4

4
1

Start with an empty graph 𝑅. (Only vertices, no edges.)
Sort edges by weight from smallest to largest.
▪ For each edge 𝑒 in sorted order:

▪ If 𝑒 does not create a cycle in 𝑅 then
▪ Add 𝑒 to 𝑅

▪ otherwise
▪ do not add 𝑒 to 𝑅

How do we tell if adding an edge will create a cycle?

HOW TO IMPLEMENT KRUSKAL’S

LET’S ASK OUR STANDARD DS QUESTIONS

What kind of object do we need to keep track on in Kruskal’s
algorithm?

What do we need to know in one step?

How does the structure change in one step?

LET’S ASK OUR STANDARD DS QUESTIONS

What kind of object do we need to keep track on in Kruskal’s
algorithm? We need to keep track of the way the edges added to the
MST divide up the vertices into components.

What do we need to know in one step? Are two vertices in the same
component?

How does the structure change in one step? If we add an edge, it
merges the two components into one.

DSDS stands for Disjoint Sets Data Structure.
What can it do?
Given a set of objects, DSDS manage partitioning the set into disjoint
subsets.
It does the following operations:
▪ Makeset(𝑆): puts each element of 𝑆 into a set by itself.
▪ Find(𝑢): it returns the name of the subset containing 𝑢.
▪ Union(𝑢, 𝑣): it unions the set containing u with the set containing 𝑣.

DSDS MATCHES OUR REQUIREMENTS

KRUSKAL’S ALGORITHM USING DSDS

procedure Kruskal(𝐺, 𝑤)
▪ Input: undirected connected graph 𝐺 with edge weights 𝑤
▪ Output: a set of edges 𝑋 that defines an MST of 𝐺
▪ Makeset(𝑉)
▪ 𝑋 = {}
▪ Sort the edges in 𝐸 in increasing order by weight.
▪ For all edges 𝑢, 𝑣 ∈ 𝐸 until 𝑋 is a connected graph

▪ if find(𝑢) ≠ find(𝑣):
▪ Add edge (𝑢, 𝑣) to 𝑋
▪ Union(𝑢, 𝑣)

KRUSKAL’S ALGORITHM USING DSDS

procedure Kruskal(𝐺, 𝑤)
▪ Input: undirected graph 𝐺 with edge weights 𝑤
▪ Output: A set of edges 𝑋 that defines a minimum spanning tree
▪ for all 𝑣 ∈ 𝑉

▪ Makeset(𝑣) |V|*(makeset)
▪ 𝑋 =
▪ sort the set of edges E in increasing order by weight sort(|E|)
▪ for all edges 𝑢, 𝑣 ∈ 𝐸 until 𝑋 = V − 1 2*|E|*(find)

▪ if find(𝑢) ≠ find(𝑣):
▪ add (𝑢, 𝑣) to 𝑋
▪ union(𝑢, 𝑣) (|V|-1)*(union)

SUBROUTINES OF KRUSKAL’S

Keep an array Leader(𝑢) indexed by element
In each array position, keep the leader of its set
Makeset(𝑢):
Find(𝑢) :
union(𝑢, 𝑣) :
Total time:

DSDS VERSION 1 (ARRAY)

EXAMPLE DSDS VERSION 1 (ARRAY)

A

B

C

D E F

G

1

2

22

2

2

3 4

4

4
1

(A,D)=1
(E,G)=1
(A,B)=2
(A,C)=2
(B,C)=2
(B,E)=2
(D,G)=2
(D,E)=3
(E,F)=4
(F,G)=4
(C,F)=4

EXAMPLE DSDS VERSION 1 (ARRAY)

A

B

C

D E F

G

1

2

22

2

2

3 4

4

4
1

(A,D)=1
(E,G)=1
(A,B)=2
(A,C)=2
(B,C)=2
(B,E)=2
(D,G)=2
(D,E)=3
(E,F)=4
(F,G)=4
(C,F)=4

A B C D E F G
(A,D)=1

(E,G)=1

(A,B)=2

(A,C)=2

(B,C)=2

(B,E)=2

(D,G)=2

(D,E)=3

(E,F)=4

(F,G)=4

(C,F)=4

A B C D E F G

EXAMPLE DSDS VERSION 1 (ARRAY)

(A,D)=1
(E,G)=1
(A,B)=2
(A,C)=2
(B,C)=2
(B,E)=2
(D,G)=2
(D,E)=3
(E,F)=4
(F,G)=4

A. |. B |. C |. D. | E. |. F. |G

A. |. B |. C |. A. | E. |. F. |G
A. |. B |. C |. A. | E. |. F. | E
B. |. B |. C |. B. | E. |. F. | E
C. |. C |. C |. C. | E. |. F. | E

E. |. E |. E |. E. | E.| F. | E |.

E. |. E |. E |. E. | E. |. E. | E

Keep an array Leader(𝑢) indexed by element
In each array position, keep the leader of its set
Makeset(𝑢): 𝑂(1)
Find(𝑢) : 𝑂(1)
union(𝑢, 𝑣) : 𝑂(|𝑉|)
Total time: 𝑂(𝐸 ⋅ 1 + 𝑉 ⋅ |𝑉| + 𝐸 ⋅ log |𝐸|) =
𝑂 𝑉 8 + 𝐸 log |𝐸|).

DSDS VERSION 1 (ARRAY)

Each set is a rooted tree, with the vertices of the tree labelled with
the elements of the set and the root the leader of the set
Only need to go up to leader, so just need parent pointer
Because we’re only going up, we don’t need to make it a binary tree
or any other fixed fan-in.

VERSION 2: TREES

VERSION 2A: DSDS OPERATIONS

Find: go up tree until we reach root
Find(𝑣).
𝐿 = 𝑣 .
Until p(L) ==L, do: L=p(L)

Assume union is only done for distinct roots. We just make one root
the child of the other.
Union(u, v)

p(v)= u

EXAMPLE DSDS VERSION 1 (ARRAY)

A

B

C

D E F

G

1

2

22

2

2

3 4

4

4
1

(A,D)=1
(E,G)=1
(A,B)=2
(A,C)=2
(B,C)=2
(B,E)=2
(D,G)=2
(D,E)=3
(E,F)=4
(F,G)=4
(C,F)=4

(A,D)=1

(E,G)=1

(A,B)=2

(A,C)=2

(B,C)=2

EXAMPLE DSDS VERSION 2A (TREE)

(A,D)=1
(E,G)=1
(A,B)=2
(A,C)=2
(B,C)=2
(B,E)=2
(D,G)=2
(D,E)=3
(E,F)=4
(F,G)=4

A. |. B |. C |. D. | E. |. F. |G

A. |. B |. C |. A. | E. |. F. |G
A. |. B |. C |. A. | E. |. F. | E
B. |. B |. C |. A. | E. |. F. | E
B. |. C |. C |. A. | E. |. F. | E

B. |. C |. E |. A . | E.| F. | E |.

B. |. C |. E |. A . | E. |. E. | E

VERSION 2A: DSDS OPERATIONS

Find: go up tree until we reach root :
Time= depth of tree, could be O(|V|)

Find(v).
L=v.
Until p(L) ==L, do: L=p(L)

. We just make one root the child of the other. O(1)
Union(u, v)

p(v)= u

Keep an array parent(u) indexed by element
In each array position, keep parent pointer
Makeset(𝑢): 𝑂(1)
Find(𝑢) : 𝑂(|𝑉|)
union(𝑢, 𝑣) : 𝑂(|1|)
Total time: 𝑂(𝐸 ⋅ 𝑉 + 𝑉 ⋅ 1 + 𝐸 ⋅ log |𝐸|) = 𝑂(|𝑉||𝐸|)
Seems worse. But can we improve it?

DSDS VERSION 2A (TREE)

Find(𝑢) : 𝑂(|𝑉|)
union(𝑢, 𝑣) : 𝑂(|1|)
Total time: O(|E|*|V|+|V|*1+ |E|log|E|) = O(|V||E|)
Seems worse. But can we improve it? Bottleneck: find when depth of
tree gets large. Solution: To keep depth small, choose smaller depth to
be child.

DSDS VERSION 2A (TREE)

vertices of the trees are elements of a set and each vertex points to
its parent that eventually points to the root.
The root points to itself.
The actual information in the data structure is stored in two arrays:
▪ p(𝑣): the parent pointer (roots point to themselves)
▪ rank(v): the depth of the tree hanging from v. (Note: in later

versions, we’ll keep rank, but it will no longer be the exact depth,
which will be more variable.) Initially, rank(v)=0

VERSION 2B(UNION-BY-RANK)

VERSION 2B: DSDS OPERATIONS

Find(v).
L=v.
Until p(L) ==L, do: L=p(L)

. We make smaller depth root the child of the other.
Union(u, v)

If rank(u) > rank(v) Then: p(v)= u;
If rank(u) < rank(v). Then: p(u)=v
If rank(u)=rank(v). Then p(v)=u, rank(u)++

LEMMA:

If we use union-by-rank, the depth of the trees is at most l𝑜𝑔(|𝑉|).

Proof: We show as loop invariant, that if for the leader of a set 𝑢 ,
rank(𝑢)=𝑟, the tree rooted at u has size at least 29

True at start, each rank(u)=0, tree size is 1 = 2: .
Only could change with union operation. If roots are different ranks,
rank doesn’t change, set size increases.
If roots have same rank, rank increases by 1, set sizes add.
If we merge two sets of rank r, each had at least 29 elements, so
merged set has at least 2 9;< elements, and new rank is r+1

LEMMA:

If we use union-by-rank, the depth of the trees is at most log(|V|).

Proof: Invariant: if for the leader of a set u, rank(u)=r, the tree
rooted at u has size at least 29 . 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑟 ≤ log 𝑉
Second invariant: rank(u) is the depth of the tree at u
So depth is at most log |V|.

VERSION 2B: DSDS OPERATIONS

Find(v). Time = O(depth) = O(log |V|)
L=v.
Until p(L) ==L, do: L=p(L)

. We make smaller depth root the child of the other.
Union(u, v). Still O(1) time

If rank(u) > rank(v) Then: p(v)= u;
If rank(u) < rank(v). Then: p(u)=v
If rank(u)=rank(v). Then p(v)=u, rank(u)++

Find(u) : O(log |V|)
union(u,v) : O(|1|).
Total time: O(|E|*log |V|+|V|*1+ |E|log|E|) = O(|E| log |V|)
Rest of algorithm matches sort time!

DSDS VERSION 2B (TREE)

Why continue? Can’t improve since bottleneck is sorting.
Many times, sorting can be done in linear time, e.g., when values are
small, can use counting or radix sort
Many times, inputs come pre-sorted
Because we want to optimize DSDS for other uses as well
Because it’s fun (for me, at least)

SHOULD WE TRY FOR BETTER?

We can improve the runtime of find and union by making the height of
the trees shorter.

How do we do that?

every time we call find, we do some housekeeping by moving up
every vertex.

PATH COMPRESSION

new find function

function find(x)
▪ if 𝑥 ≠ 𝑝 𝑥 then

p 𝑥 ≔ 𝑓𝑖𝑛𝑑 𝑝 𝑥
▪ return p(𝑥)

PATH COMPRESSION

EXAMPLE DSDS VERSION 2C (TREE)

(A,D)=1
(E,G)=1
(A,B)=2
(A,C)=2
(B,C)=2
(B,E)=2
(D,G)=2
(D,E)=3
(E,F)=4
(F,G)=4

A. |. B |. C |. D. | E. |. F. |G

A. |. B |. C |. A. | E. |. F. |G
A. |. B |. C |. A. | E. |. F. | E
A. |. A |. C |. A. | E. |. F. | E
A. |. A |. A |. A. | E. |. F. | E

A. |. A |. A |. A . | A.| F. | E |.

A. |. A |. A |. A . | A |. A. | A

Rank(A)=1
Rank(E) =1

Rank(A)=2

A. |. A |. A |. A . | A.| F. | A |.

whenever you call find on a vertex v, it points v and all of its
ancestors to the root.

Seems like a good idea, but how much difference could it make?

Since worst-case find could be first find, same worst-case time
as before.

FIND (PATH COMPRESSION)

The ranks do not necessarily represent the height of the graph
anymore and so will this cause problems?

FIND (PATH COMPRESSION) (RANKS)

Amortized analysis: Bound total time of m operations, rather than
worst-case time for single operation * m

Intuition: Fast operations make things worse in the future, but slow
operations make things better in the future. (Merging might build up
the height of the tree, but finding a deep vertex shrinks the average
heights.).

AMORTIZED ANALYSIS

