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Algorithm Mining 
• Algorithms designed for one problem are often usable for 

a number of other computational tasks, some of which 
seem unrelated to the original goal

• Today, we are going to look at how to use the depth-first 
search algorithm to solve a variety of graph problems



Algorithm Mining techniques
• Deeper Analysis: What else does the algorithm already 

give us?  
• Augmentation: What additional information could we 

glean just by keeping track of the progress of the 
algorithm?

• Modification: How can we use the same idea to solve new 
problems in a similar way?

• Reduction: How can we use the algorithm as a black box 
to solve new problems? 



Graph Reachability and DFS
• Graph reachability:  Given a directed graph 𝐺, and a 

starting vertex 𝑣, return an array that specifies for each 
vertex 𝑢 whether 𝑢 is reachable from 𝑣

• Depth-First Search (DFS):  An efficient algorithm for 
Graph reachability

• Breadth-First Search (BFS): Another efficient algorithm for 
Graph reachability.  



DFS as recursion
• procedure explore(𝐺, 𝑣) 
• Input: graph 𝐺 = (𝑉, 𝐸); node 𝑣 in 𝑉 output: 
• Output: array visited[𝑢]
• 1.  visited[𝑣] = true 
• 2.  for each edge 𝑣, 𝑢 ∈ 𝐸 do: 
• if not visited[𝑢]: explore(𝐺, 𝑢) 



Key Points of DFS
• No matter how the recursions are nested, for each vertex 𝑢, we 

only run explore(𝐺, 𝑢) ONCE, because after that, it is marked 
visited. (We need this for termination and efficiency)

• On the other hand, we discover a path to a new destination, we 
always explore all new vertices reachable

(We need this for correctness, to guarantee that we find ALL the 
reachable vertices)



DFS as iterative algorithm REACHABILITY:
procedure explore(𝐺: directed graph, 𝑣: vertex)

Initialize array visited[𝑢] to False
Initialize stack of vertices 𝐹, PUSH 𝑣; Visited[𝑣]=True;
While 𝐹 is not empty: 
𝑣=Pop;
For each neighbor 𝑢 of 𝑣 (in reverse order): 

If not visited[𝑢]:
Push 𝑢; visited[𝑢] = True;

Return visited

procedure explore(𝐺 = (𝑉 , 𝐸), 𝑠 )
visi ted(𝑠 )=true
for each edge (𝑠 , 𝑢 ) :

i f not visi ted(𝑢 ) :  
explore(𝐺 , 𝑢 )



DFS on Directed Graphs
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DFS on Directed Graphs

A C

B D

E G

F H

F= A.  Pop A.  Neighbors of A = (C) 
Push C, visited C == True
F= C



DFS on Directed Graphs
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F= C.  Pop C.  Neighbors of C = (F,E,B) 
Push F, Push E, Push B, 
F= B, E, F



DFS on Directed Graphs
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F= B,E,F.  Pop B.  Neighbors of B = (D,A) 
Push D , 
F=  E, F, D



DFS on Directed Graphs
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F= E,F, D Pop E.  Neighbors of E = (H,G,F) 
Push G, H
F=  F, D, G, H.   Pop, Pop, Pop, Pop



Running time of DFS
procedure explore(𝐺 = (𝑉 , 𝐸), 𝑠 )
visi ted(𝑠 )=true
for each edge (𝑠 , 𝑢 ) :

i f not visi ted(𝑢 ) :  
explore(𝐺 , 𝑢 )



DFS as iterative algorithm REACHABILITY:
procedure explore(𝐺: directed graph, 𝑣: vertex)

Initialize array visited[𝑢] to False.                                     O(|V|)
Initialize stack of vertices 𝐹, PUSH 𝑣; Visited[𝑣]=True;    O(1)
While 𝐹 is not empty:  done at most |V| times, once per v
𝑣=Pop;
For each neighbor 𝑢 of 𝑣 (in reverse order):             𝑂(1 + deg(𝑣)) = 𝑂(|𝑉|)

If not visited[𝑢]:
Push 𝑢; visited[𝑢] == True;

Return visited.      
Tighter : Loop runs once for each v,  𝑂(1 + deg(𝑣)) time on that loop.
So total time at most :  𝑂(∑! 1 + deg 𝑣 ) = 𝑂( 𝑉 + 𝐸 )



Complete DFS
• DFS actually just costs O(number of reachable nodes  + 

number of reachable edges ).  Parts of the graph that 
weren’t found don’t cost either.  

• So, still in total O(|V|+|E|) time, we can run also keep on 
running explore from undiscovered vertices, until we’ve 
found the whole graph.  We usually keep track of which 
iteration each vertex was discovered in.  

• Alternative viewpoint:  Add a new vertex with edges to all 
vertices.  Run DFS from the new vertex.  



All reachable vertices, not all paths
• While DFS finds all the reachable vertices, it doesn’t 

consider all paths between them.  No feasible algorithm 
could.  
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All reachable vertices, not all paths
• While DFS finds all the reachable vertices, it doesn’t 

consider all paths between them.  No feasible algorithm 
could.  

A
1

A
2

A
3

A
n

2"#$ paths from A1 to An  



Finding paths: the DFS tree
• After the DFS, we know which vertices are reachable, but 

not how to get there

How long could a path in a graph be?
How about a simple path?  
How many paths do we have to find?



Finding paths: the DFS tree
• After the DFS, we know which vertices are reachable, but 

not how to get there

• We have up to |V|-1 paths to find, and each path can be 
up to length |V|.



Synergy
• After the DFS, we know which vertices are reachable, but 

not how to get there

• We have up to |V|-1 paths to find, and each path can be 
up to length |V|.

• Sometimes, doing something similar many times costs 
less than doing it from scratch each time.

For DFS, the paths overlap, and form  a |V|-1 edge tree



DFS augmented to create DFS tree
• procedure explore(𝐺, 𝑣) 
• Input: graph 𝐺 = (𝑉, 𝐸); node 𝑣 in 𝑉 output: 
• Output: array visited[𝑢]; parent[𝑢]
• 1.  visited[𝑣] = true 
• 2.  for each edge 𝑣, 𝑢 ∈ 𝐸 do: 
• if not visited[𝑢]: parent[𝑢]=𝑣; explore(𝐺, 𝑢); 



keeping track of paths



DFS augmtd. with pre, post numbers
• procedure explore(𝐺, 𝑣) 
• Input: graph 𝐺 = (𝑉, 𝐸); node 𝑣 ∈ 𝑉 output: count starts at 1
• Output: array visited[𝑢]; parent[𝑢]; pre[𝑢]; post[𝑢]
• 1.  visited[𝑣] = true ;
• 2.  for each edge 𝑣, 𝑢 ∈ 𝐸 do: 
• if not visited[𝑢]: parent[𝑢]=𝑣; pre[𝑢]=count; count++; explore(𝐺, 𝑢); 

• 3.  post[𝑣] = count, count++



Depth first search
procedure DFS(G)
cc = 0
for each vertex v:

visited(v) = false
for each vertex v:

if not visited(v):
cc++
explore(G,v)

procedure DFS(G)
cc = 0
clock = 1
for each vertex v:

visited(v) = false
for each vertex v:

if not visited(v):
cc++
explore(G,v)

procedure previsit(v)
pre(v)=clock
clock++

procedure post visit(v)
post(v)=clock
clock++



keeping track of paths



Inferring relative position in tree
• 𝑢 is below 𝑣 in the DFS tree iff pre(𝑣) < pre(𝑢) and post(𝑢) 

< post(𝑣). 
• In this case, an edge from 𝒖 to 𝒗 creates a cycle

• 𝑢 is to the right of 𝑣 iff pre(𝑣) < pre(𝑢) and post(𝑣) < 
post(𝑢) 



• Tree edge: solid edge included in the DFS output tree
• Back edge: leads to an ancestor
• Forward edge: leads to a descendent
• Cross edge: leads to neither anc. or des.: always from 

right to left

Edge types (directed graph)



DFS on Directed Graphs

A

B

C

D

E

F

G

H

A

A
1

C C
2

B

B
3

D
D

4D
5

B

6
E

E
7

F
F

8F
9

G

G
10

H

H
11

H

12

G

13

E
14

C
15

A

16

A

B

GD F

H

C

E

A

C

E

G

H

F

B

D



The different types of edges can be determined from the 
pre/post numbers for the edge (𝑢, 𝑣)
• (𝑢, 𝑣) is a tree/forward edge then 𝑝𝑟𝑒 𝑢 < 𝑝𝑟𝑒 𝑣 <
𝑝𝑜𝑠𝑡 𝑣 < 𝑝𝑜𝑠𝑡(𝑢)

• (𝑢, 𝑣) is a back edge then 𝑝𝑟𝑒 𝑣 < 𝑝𝑟𝑒 𝑢 < 𝑝𝑜𝑠𝑡 𝑢 <
𝑝𝑜𝑠𝑡(𝑣)

• (𝑢, 𝑣) is a cross edge then 𝑝𝑟𝑒 𝑣 < 𝑝𝑜𝑠𝑡 𝑣 < 𝑝𝑟𝑒 𝑢 <
𝑝𝑜𝑠𝑡(𝑢)

Edge types and pre/post numbers





• A cycle in a directed graph is a path that starts and ends 
with the same vertex

𝑣4 → 𝑣5 → 𝑣6 → ⋯ → 𝑣7 → 𝑣4

𝐴 → 𝐶 → 𝐸 → 𝐴

Cycles in Directed Graphs



Proof: →
Suppose G has a cycle:

𝑣4 → 𝑣5 → 𝑣6 → ⋯ → 𝑣7 → 𝑣4

A directed graph has a directed cycle iff its 
dfs output tree has a back edge



Proof: →
Suppose G has a cycle:

𝑣4 → 𝑣5 → 𝑣6 → ⋯ → 𝑣7 → 𝑣4
Suppose 𝑣4 is the first vertex to be discovered.
(What does that mean about 𝑣4?)

A directed graph has a directed cycle iff its 
dfs output tree has a back edge



Proof: →
Suppose G has a cycle:

𝑣4 → 𝑣5 → 𝑣6 → ⋯ → 𝑣7 → 𝑣4
Suppose 𝑣4 is the first vertex to be discovered. (the 
vertex with the lowest pre-number.)

All other 𝑣8 are reachable from it and therefore, they are 
all descendants in the DFS tree. 

A directed graph has a directed cycle iff its 
dfs output tree has a back edge



Proof: →
Suppose G has a cycle:

𝑣! → 𝑣" → 𝑣# → ⋯ → 𝑣$ → 𝑣!
Suppose 𝑣! is the first vertex to be discovered. (the vertex with 
the lowest pre-number.)

All other 𝑣% are reachable from it and therefore, they are all 
descendants in the dfs tree. 

Therefore the edge 𝑣$ , 𝑣! is a back edge. 

A directed graph has a directed cycle iff its 
dfs output tree has a back edge



Proof: ←
Suppose 𝑏, 𝑎 is a back edge. 

A directed graph has a directed cycle iff its 
dfs output tree has a back edge



Proof: ←
Suppose 𝑏, 𝑎 is a back edge. 

Then by definition 𝑎 is a ancestor of 𝑏 so there is a path 
from 𝑎 to 𝑏 in the DFS output tree.

A directed graph has a directed cycle iff its 
dfs output tree has a back edge



Proof: ←
Suppose 𝑏, 𝑎 is a back edge. 

Then by definition 𝑎 is a ancestor of 𝑏 so there is a path 
from 𝑎 to 𝑏 in the DFS output tree.

Along with the back edge, this path completes a cycle.

A directed graph has a directed cycle iff its 
dfs output tree has a back edge



• A directed graph without a cycle is called acyclic. (DAG)

Corollary:
A directed graph 𝐺 is a DAG if and only if it’s DFS output 
tree does not have any back edges.

Directed  Acyclic Graphs (DAG)



Step 1: perform dfs on the graph
Step 2: loop through each edge to see if it is a back edge.

i.e.:
for each edge (𝑢, 𝑣), 

if pre(𝑣) < pre(𝑢) < post(𝑢) < post(𝑣):
return “not DAG”

return “DAG”

How to spot a DAG?



• Is it possible to order the vertices such that all edges go 
in only one direction?

• For what types of DAGs is this possible?
• How do we find such an ordering?

Linearization aka Topological Sort



Theorem: every edge in a DAG goes from a higher post 
number to lower post number.

Property of DAGS



Theorem: every edge in a DAG goes from a higher post 
number to lower post number.

proof:
suppose (𝑢, 𝑣) is an edge in a DAG then it can’t be a back 
edge, therefore it can only be a forward edge/tree edge or 
a cross edge.
All of which have the property that post(v) < post(u).
Corollary:  Sorting by post numbers is a topological sort

Property of DAGS



Linearization of a DAG:
Since we know that edges go in the direction of decreasing 
post numbers, if we order the vertices by decreasing post 
numbers then we will have a linearization
procedure linearize(DAG 𝐺 = (𝑉, 𝐸))
run DFS(𝐺)
return list of vertices in decreasing order of post numbers 
(by putting at start of list when post number assigned)

Property of DAGS



• Since all DAGs can be linearized, that means the first 
vertex in the ordering does not have any edges coming in 
and the last vertex does not have any edges going out.

• Definitions:
• A vertex with no incoming edges is called a source
• A vertex with no outgoing edges is called a sink

• Theorem: All DAGs have at least one source and one 
sink.

Sources and sinks



Strongly connected vertices
Two vertices 𝑢 and 𝑣 in a directed 
graph are strongly connected if 
there exists a path from 𝑢 to 𝑣 and 
a path from 𝑣 to 𝑢.

Which vertices are strongly 
connected to J?
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Strongly connected vertices
Two vertices 𝑢 and 𝑣 in a directed 
graph are strongly connected if 
there exists a path from 𝑢 to 𝑣 and 
a path from 𝑣 to 𝑢.

Which vertices are strongly 
connected to J?  {J, K, L, M}
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J,K,L,M



Strongly connected Graph
A graph is called strongly connected 
if for each pair of vertices 𝑣, 𝑢 there is 
a path from 𝑣 to 𝑢 and a path from 𝑢
to 𝑣.

Is this a strongly connected graph?
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Consider the relation 𝑢𝑅𝑣 if 𝑢 is strongly connected to 𝑣. 

Then 𝑅 is an equivalence relation. It is reflexive, symmetric and 
transitive.

So 𝑅 partitions 𝑉, the set of vertices into equivalence classes.

These equivalence classes are called strongly connected 
components.

Strongly connected components



Strongly connected component
What are the strongly connected 
components of this graph?

L
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Strongly connected components as 
vertices. (Meta-graph)
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Directed Graphs as DAGs of SCCs
Every Directed graph is a DAG of its strongly connected 
components.

Some SCCs are sink SCCs and some are source SCCs.



There is a linear time algorithm that decomposes a 
directed graph into its strongly connected components.

Decomposition

If explore is performed on a vertex 𝑢, then it will visit only the 
vertices that are reachable by 𝑢.

What vertices will be visited when explore is performed on 𝑢 if 𝑢
is in a sink SCC?  



Sink SCCs

If explore is performed on a vertex that is in a sink SCC, 
then only the vertices from that SCC will be visited.

This suggests a way to look for SCCs.
• Start explore on a vertex in a sink SCC and visit its SCC.
• Remove the sink SCC from the graph and repeat.



Ideally we would like to find a vertex in a sink SCC.
Unfortunately, there is not a direct way to do this.

Source SCCs



However, there is a way to find a vertex in a source SCC.

Source SCCs

The vertex with the greatest post number in any DFS output tree 
belongs to a source SCC.

The vertex with the least post number in a dfs output does not 
necessarily belong to a sink SCC.



Example of low post number not in a sink.
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The vertex with the greatest post number in any DFS 
output tree belongs to a source SCC.

To prove this, we will state a more general property:

If 𝐶 and 𝐶′ are strongly connected components and there is 
an edge from a vertex in 𝐶 to a vertex in 𝐶′ then the highest 
post number in 𝐶 is greater than the highest post number in 
𝐶′

Vertices in Source SCCs



The vertex with the greatest post number in any DFS 
output tree belongs to a source SCC.

To prove this, we will state a more general property:

If 𝐶 and 𝐶′ are strongly connected components and there is 
an edge from a vertex in 𝐶 to a vertex in 𝐶′ then the highest 
post number in 𝐶 is greater than the highest post number in 
𝐶′

Vertices in S SCCs



Case 1: DFS searches 𝐶 before 𝐶′:
Then at some point dfs will cross into C’ and visit every 
edge in C’ then it will retrace its steps until it gets back to
the first node in C it started with and assign it the highest post number

Proof

C C’



Case 2: DFS searches 𝐶′ before 𝐶:
Then DFS will visit all vertices of C’ before getting stuck
and assign a post number to all vertices of C’.
Then it will visit some vertex of C later and assign post numbers to those
vertices.

Proof

C C’



The strongly connected components can be linearized by 
arranging them in decreasing order of their highest post 
numbers.

Corollary



Given a graph 𝐺, let 𝐺& be the reverse graph of 𝐺.
Then the sources of 𝐺& are the sinks of 𝐺,

So if we perform DFS on 𝐺& then the vertex with the highest 
post number is in a source. This means that this vertex will be 
in a sink of 𝐺.

So start with this vertex and explore the SCC.

Then the vertex with the next greatest post number in 𝐺& is in 
the next SCC in linear order so start with that one next.

How to find sink SCCs



• Construct 𝐺:.
• Run DFS on 𝐺: and keep track of the post numbers.
• Run DFS on 𝐺 and order the vertices in decreasing 

order of the post numbers from the previous step. 
Every time DFS increments cc, you have found a new 
SCC!!

How to decompose a graph into its SCCs:
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• Run DFS on 𝐺& and keep track of the post numbers.
• Run DFS on 𝐺 and order the vertices in decreasing order of 

the postnumbers from the previous step. Every time DFS 
increments cc, you have found a new SCC!!

How long does this take?

I claim it is linear time for each step and so it is linear time in 
general

How to decompose a graph into its SCCs:



• Find what vertices can be reached by a given vertex
• Divide an undirected graph into connected components
• Find cycles in graphs (directed or undirected.)
• Find sinks and sources in DAGs
• Topologically sort a DAG
• Make a directed graph into a DAG of its SCCs

DFS is good for



DFS is not good for



• Finding shortest distances between vertices.

DFS is not good for


