Lecture 5: Undirected connectivity

An undirected graph is connected if there is a path between any pair of nodes.

This graph has 2 connected components.
explore (G,v) returns the connected component containing v .
To explore the rest of the graph, restart explore() elsewhere.

DFS decomposes an undirected graph into its connected components!

```
procedure dfs(G)
for all v in V:
    visited[v] = false
for all v in v:
    if not visited[v]:
        explore (G,v)
```

explore (G,a)
explore(G,h)

Running time analysis

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
        explore (G,u)
procedure dfs(G)
for all v in V:
    visited[v] = false
for all v in v:
    if not visited[v]:
        explore (G,v)
```

How long does dfs(G) take?
explore(G,v) is called exactly once for each node v.

DFS search forest

__ tree edge: traversed by DFS
--_ back edge: not traversed (led to a node already visited)

