
Lecture 1: Analyzing algorithms

A royal mathematical 
challenge (1202):

Suppose that rabbits take 
exactly one month to 
become fertile, after which 
they produce one child per 
month, forever. Starting 
with one rabbit, how many 
are there after n months?

Leonardo da Pisa, aka 
Fibonacci

The proliferation of rabbits

Fertile Not fertile

Initially

One month

Two months

Three months

Four months

Five months

Rabbits take one month to become fertile, after which they produce one child per month, forever. 



The Fibonacci sequence

F1 = 1, F2 = 1, Fn = Fn-1 + Fn-2

These numbers grow very fast: F30 > 106 !

In fact, Fn » 20.694n » 1.6n, exponential growth.

The Fibonacci sequence

F1 = 1, F2 = 1, Fn = Fn-1 + Fn-2

Can you see why Fn < 2n?



Computing Fibonacci numbers

function Fib1(n)
if n = 1 return 1
if n = 2 return 1

return Fib1(n-1) + Fib1(n-2)

A recursive algorithm

Two questions we always ask about algorithms:

Does it work correctly?

How long does it take?

Running time analysis

function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)

Exponential time... how bad is this?

Eg. Computing F200 needs about 2140 operations.
How long does this take on a fast computer?



IBM Summit

Can perform up to 200 quadrillion (= 200 x 1015) operations per second.

Is exponential time all that bad?

The Summit needs 282 seconds for F200.

Time in seconds Interpretation
210 17 minutes
220 12 days
230 32 years
240 cave paintings
245 homo erectus discovers fire
251 extinction of dinosaurs
257 creation of Earth
260 origin of universe



Post mortem

What takes so long? 
Let’s unravel the recursion…

F(n)

F(n-1) F(n-2)

F(n-2)

F(n-3)

F(n-4)F(n-3)

F(n-4)

F(n-3)

F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

The same subproblems get solved over and over again!

function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)

A better algorithm

function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:

fib[i] = fib[i-1] + fib[i-2]
return fib[n]

Subproblems: F1, F2, …, Fn. Solve them in order and save their values!

[1] Does it return the correct answer?

[2] How fast is it? 



Polynomial vs. exponential

Polynomial running times: 

Exponential running times:

To an excellent first approximation:
polynomial is reasonable
exponential is not reasonable

This is one of the most fundamental dichotomies in the 
analysis of algorithms.

A more careful analysis

function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:

fib[i] = fib[i-1] + fib[i-2]
return fib[n]

Problem: we cannot count these additions as single operations!

How many bits does Fn have?

Addition of n-bit numbers takes O(n) time.

Fib1: O(n 20.7n) time

Fib2: O(n2) time

function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)



Addition

Adding two n-bit numbers takes O(n) simple operations:

E.g. 22 + 13:

[22] 1 0 1 1 0
[13] 1 1 0 1

Big-O notation

The constant depends upon:
The units of time – minutes, seconds, milliseconds,…
Specifics of the computer architecture.

It is much too hairy to figure out exactly. Moreover it is 
nowhere as important as the huge gulf between n2 and 2n.
So we simply say the running time is O(n2).

function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:

fib[i] = fib[i-1] + fib[i-2]
return fib[n]

Running time is 
proportional to n2.

But what is the constant: 
is it 2n2 or 3n2 or what?


