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Quantum Computation
Phase estimation → Order finding → Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

We will solve the factoring problem by reduction to the order
finding problem.
Theorem 1: Suppose N is an L bit composite number, and x is a
non-trivial solution to the equation x2 = 1 (mod N) in the range
1 ≤ x ≤ N, that is, neither x = 1 (mod N) nor
x = −1 (mod N). Then at least one of gcd(x − 1,N) and
gcd(x + 1,N) is a non-trivial factor of N that can be computed
using O(L3) operations.
Theorem 2: Suppose N = pα1

1 ...pαm
m is the prime factorisation of

an odd composite positive integer. Let x be an integer chosen
uniformly at random, subject to the requirement that
1 ≤ x ≤ N − 1 and x is co-prime to N. Let r be the order of x
modulo N. Then

Pr[r is even and x r/2 6= −1 (mod N)] ≥ 1− 1

2m
.
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Quantum Computation
Phase estimation → Order finding → Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

Quantum Factoring Algorithm

1. If N is even, return 2 as a factor.
2. Determine if N = ab for integers a, b ≥ 2 and if so, return a.
3. Randomly choose 1 ≤ x ≤ N − 1. If gcd(x ,N) > 1, then return
gcd(x ,N).
4. Use the Quantum order-finding algorithm to find the order r of x
modulo N.
5. If r is even and x r/2 6= −1 (mod N), then compute
p = gcd(x r/2 − 1,N) and q = gcd(x r/2 + 1,N). If either p or q is a
non-trivial factor of N, then return that factor else return “Failure”.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information



Quantum Computation: Period finding
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Quantum Computation
Phase estimation → Period finding

Period finding problem

Given a boolean function f such that f (x) = f (x + r) for some
unknown 0 < r < 2L, where x , r = {0, 1, 2, ...} and given a unitary
transform Uf that performs the transformation
U |x〉 |y〉 → |x〉 |y ⊕ f (x)〉, determine the least such r > 0.

Period-finding algorithm

1. |0〉 |0〉 (Initial state)

2. → 1
2t/2

∑2t−1
x=0 |x〉 |0〉 (Create superposition)

3. → 1
2t/2

∑2t−1
x=0 |x〉 |f (x)〉 (Apply U)

≈ 1√
r2t/2

∑r−1
`=0

∑2t−1
x=0 e(2πi)

`x
r |x〉

∣∣∣f̂ (`)
〉

4. → 1√
r

∑r−1
`=0

∣∣∣(̃`/r)
〉 ∣∣∣f̂ (`)

〉
(Apply inverse FT to 1st register)

5. → (̃`/r) (Measure first register)
6. → r (Use continued fractions algorithm)
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Quantum Computation
Phase estimation → Period finding

Period finding problem

Given a boolean function f such that f (x) = f (x + r) for some
unknown 0 < r < 2L, where x , r = {0, 1, 2, ...} and given a unitary
transform Uf that performs the transformation
U |x〉 |y〉 → |x〉 |y ⊕ f (x)〉, determine the least such r > 0.

Period-finding algorithm

1. |0〉 |0〉 (Initial state)

2. → 1
2t/2

∑2t−1
x=0 |x〉 |0〉 (Create superposition)

3. → 1
2t/2

∑2t−1
x=0 |x〉 |f (x)〉 (Apply U)

= 1√
r2t/2

∑r−1
`=0

∑2t−1
x=0 e(2πi)

`x
r |x〉

∣∣∣f̂ (`)
〉

4. → 1√
r

∑r−1
`=0

∣∣∣(̃`/r)
〉 ∣∣∣f̂ (`)

〉
(Apply inverse FT to 1st register)

5. → (̃`/r) (Measure first register)
6. → r (Use continued fractions algorithm)

Claim 1: Let
∣∣∣f̂ (`)

〉
≡ 1√

r

∑r−1
x=0 e

−(2πi) `x
r |f (x)〉. Then

|f (x)〉 = 1√
r

∑r−1
`=0 e

(2πi) `x
r

∣∣∣f̂ (`)
〉

.
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Quantum Computation
Phase estimation → Period finding

The basic ideas involved in order finding and period finding
seems to be the same.

Question: Can we generalise the core ideas and design a
canonical algorithm for a very general problem so that order
finding, factoring, period finding etc. are just special cases of
this general problem?

Yes. The general problem is called the Hidden Subgroup
Problem.

Before we see the hidden subgroup problem, we will see
another special case: Discrete Logarithm.
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Quantum Computation: Discrete logarithm
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Quantum Computation
Phase estimation → Discrete logarithm

Discrete logarithm problem

Given positive integers a, b,N such that b = as (mod N) for some
unknown s, find s.

Question: What is the running time of the naive classical
algorithm?
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Quantum Computation
Phase estimation → Discrete logarithm

Discrete logarithm problem

Given positive integers a, b,N such that b = as (mod N) for some
unknown s, find s.

Question: What is the running time of the naive classical
algorithm? Ω(N)
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Quantum Computation
Phase estimation → Discrete logarithm

Discrete logarithm problem

Given positive integers a, b,N such that b = as (mod N) for some
unknown s, find s.

Consider a bi-variate function f (x1, x2) = asx1+x2 (mod N).
Claim 1: f is a periodic function with period (`,−`s) for any
integer `.

So it may be possible for us to pull out s using some of the
previous ideas developed.

Question: How does discovering s for the above function help us
in solving the discrete logarithm problem?
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Quantum Computation
Phase estimation → Discrete logarithm

Discrete logarithm problem

Given positive integers a, b,N such that b = as (mod N) for some
unknown s, find s.

Consider a bi-variate function f (x1, x2) = asx1+x2 (mod N).
Claim 1: f is a periodic function with period (`,−`s) for any
integer `.

So it may be possible for us to pull out s using some of the
previous ideas developed.

Question: How does discovering s for the above function help us
in solving the discrete logarithm problem?

Main idea: f (x1, x2) ≡ bx1ax2 (mod N).
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Quantum Computation
Phase estimation → Discrete logarithm

Bi-variate period

Let f be a function such that f (x1, x2) = asx1+x2 (mod N) and let r be the
order of a modulo N. Let U be a unitary operator that performs the
transformation: U |x1〉 |x2〉 |y〉 → |x1〉 |x2〉 |y ⊕ f (x1, x2)〉. Find s.

Discrete logarithm

1. |0〉 |0〉 |0〉 (Initial state)

2. → 1
2t
∑2t−1

x1=0

∑2t−1
x2=0 |x1〉 |x2〉 |0〉 (Create superposition)

3. → 1
2t
∑2t−1

x1=0

∑2t−1
x2=0 |x1〉 |x2〉 |f (x1, x2)〉 (Apply U)

= 1√
r2t

∑r−1
`2=0

∑2t−1
x1=0

∑2t−1
x2=0 e

(2πi)
s`2x1+`2x2

r |x1〉 |x2〉
∣∣∣f̂ (s`2, `2)

〉
= 1√

r2t

∑r−1
`2=0

[∑2t−1
x1=0 e

(2πi)
s`2x1

r |x1〉
] [∑2t−1

x2=0 e
(2πi)

`2x2
r |x2〉

] ∣∣∣f̂ (s`2, `2)
〉

4. → 1√
r

∑r−1
`2=0

∣∣∣∣(̃ s`2r )

〉 ∣∣∣(̃ `2r )
〉 ∣∣∣f̂ (s`2, `2)

〉
(Apply invFT to register 1,2)

5. →
(

(̃ s`2r ), (̃ `2r )

)
(Measure register 1, 2)

6. → s (Use continued fractions algorithm)

Claim: Let
∣∣∣f̂ (`1, `2)

〉
≡ 1√

r

∑r−1
j=0 e

−(2πi) `2j
r |f (0, j)〉. Then

|f (x1, x2)〉 =
1√
r

r−1∑
`2=0

e(2πi)
s`2x1+`2x2

r

∣∣∣f̂ (s`2, `2)
〉
.
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Quantum Computation: Hidden Subgroup Problem (HSG)
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Quantum Computation
Hidden Subgroup Problem (HSG)

The algorithms for order-finding, factoring, discrete logarithm,
period-finding follow the same general pattern.
It would be useful if we could extract the main essence and define
a general problem that can be solved using these ideas.

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G → X with the promise that
there is a subgroup H ⊆ G such that f assigns a unique value to each
coset of H. Find H.
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Quantum Computation
Hidden Subgroup Problem (HSG)

The algorithms for order-finding, factoring, discrete logarithm,
period-finding follow the same general pattern.
It would be useful if we could extract the main essence and define
a general problem that can be solved using these ideas.

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G → X with the promise that
there is a subgroup H ⊆ G such that f assigns a unique value to each
coset of H. Find H.

Question: Can order-finding, period finding etc. be seen as just a
special case of the HSG problem?
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Quantum Computation
Hidden Subgroup Problem (HSG)

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G → X with the promise that
there is a subgroup H ⊆ G such that f assigns a unique value to each
coset of H. Find H.

Question: Can order-finding, period finding etc. be seen as just a
special case of the HSG problem?

Name G X H f
Simon ({0, 1}n,⊕) {0, 1}n {0, s} f (x ⊕ s) = f (x)

Order (ZN ,+) aj {0, r , 2r , ...} f (x) = ax

finding j ∈ Zr r ∈ G f (x + r) = f (x)
ar = 1
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Quantum Computation
Hidden Subgroup Problem (HSG)

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G → X with the promise that
there is a subgroup H ⊆ G such that f assigns a unique value to each
coset of H. Find H.

Question: How does a Quantum computer solve the hidden
subgroup problem?

Quantum algorithm for HSG

Create uniform superposition 1√
|G |

∑
g∈G |g〉 |f (g)〉.

Measure the second register to create a uniform superposition
over a coset of H: 1√

H

∑
h∈H |h + k〉.

Apply Fourier transform
Measure and extract generating set of the subgroup H.
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Quantum Computation
Hidden Subgroup Problem (HSG)

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G → X with the promise that
there is a subgroup H ⊆ G such that f assigns a unique value to each
coset of H. Find H.

Question: How does a Quantum computer solve the hidden
subgroup problem?

Quantum algorithm for HSG

Create uniform superposition 1√
|G |

∑
g∈G |g〉 |f (g)〉.

Measure the second register to create a uniform superposition
over a coset of H: 1√

H

∑
h∈H |h + k〉.

Apply Fourier transform
Measure and extract generating set of the subgroup H.

Question: How does Fourier transform help?

Shift-invariance property: If
∑

h∈H αh |h〉 →
∑

g∈G α̃g |g〉, then∑
h∈H αh |h + k〉 →

∑
g∈G e(2πi)

gk
|G| α̃g |g〉.
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Quantum Search Algorithms
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Quantum Search Algorithms
The oracle

Search problem

Let N = 2n and let f : {0, ...,N − 1} → {0, 1} be a function that has
1 ≤ M ≤ N solutions. That is, there are M values for which f
evaluates to 1. Find one of the solutions.

Question: What is the running time for the classical solution?
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Quantum Search Algorithms
The oracle

Search problem

Let N = 2n and let f : {0, ...,N − 1} → {0, 1} be a function that has
1 ≤ M ≤ N solutions. That is, there are M values for which f
evaluates to 1. Find one of the solutions.

Question: What is the running time for the classical solution?
O(N)
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Quantum Search Algorithms
The oracle

Search problem

Let N = 2n and let f : {0, ...,N − 1} → {0, 1} be a function that has
1 ≤ M ≤ N solutions. That is, there are M values for which f
evaluates to 1. Find one of the solutions.

Let O be a quantum oracle with the following behaviour:

|x〉 |q〉 O→ |x〉 |q ⊕ f (x)〉 .

Claim 1: |x〉
(
|0〉−|1〉√

2

)
O−→ (−1)f (x) |x〉

(
|0〉−|1〉√

2

)
We will always use the state |−〉 as the second register in the
discussion. So, we may as well describe the behaviour of the
oracle O in short as:

|x〉 O−→ (−1)f (x) |x〉 .

Claim 2: There is a quantum algorithm that applies the search

oracle O, O(
√

N
M ) times in order to obtain a solution.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information



Quantum Search Algorithms
The Grover operator

Here is the schematic circuit for quantum search:

Where G , called the Grover operator or Grover iteration, is:
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Quantum Search Algorithms
The Grover operator

Where G , called the Grover operator or Grover iteration, is:

Exercise: Show that the unitary operator corresponding to the
phase shift in the Grover iteration is (2 |0〉 〈0| − I ).
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Quantum Search Algorithms
The Grover operator

Where G , called the Grover operator or Grover iteration, is:

Exercise: Show that the unitary operator corresponding to the
phase shift in the Grover iteration is (2 |0〉 〈0| − I ).
Let |ψ〉 = 1√

N

∑N−1
x=0 |x〉.

Exercise: The operation after the oracle call in the Grover
operator, that is H⊕n(2 |0〉 〈0| − I )H⊕n, may be written as
2 |ψ〉 〈ψ| − I .
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Quantum Search Algorithms
The Grover operator

Where G , called the Grover operator or Grover iteration, is:

Exercise: Show that the unitary operator corresponding to the
phase shift in the Grover iteration is (2 |0〉 〈0| − I ).
Let |ψ〉 = 1√

N

∑N−1
x=0 |x〉.

Exercise: The operation after the oracle call in the Grover
operator, that is H⊕n(2 |0〉 〈0| − I )H⊕n, may be written as
2 |ψ〉 〈ψ| − I .
The Grover operator G can then be written as
G = (2 |ψ〉 〈ψ| − I )O.
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Quantum Search Algorithms
The Grover operator

Where G , called the Grover operator or Grover iteration, is:

Exercise: Show that the unitary operator corresponding to the
phase shift in the Grover iteration is (2 |0〉 〈0| − I ).
Let |ψ〉 = 1√

N

∑N−1
x=0 |x〉.

Exercise: The operation after the oracle call in the Grover
operator, that is H⊕n(2 |0〉 〈0| − I )H⊕n, may be written as
2 |ψ〉 〈ψ| − I .
The Grover operator G can then be written as
G = (2 |ψ〉 〈ψ| − I )O.
Exercise: Show that the operation (2 |ψ〉 〈ψ| − I ) applied to a
general state

∑
k αk |k〉 gives

∑
k (−αk + 2〈α〉) |k〉.
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Quantum Search Algorithms
The Grover operator

Question: Intuitively, what is going on in this circuit? How does this

circuit help in pulling out a solution? Why O(
√
N) repetitions?
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Quantum Search Algorithms
Geometric visualization

Question: Intuitively, what is going on in this circuit? How does

this circuit help in pulling out a solution? Why O(
√
N)

repetitions?
Let

|α〉 =
1√

N −M

∑
x s.t. f (x)=0

|x〉 ,

|β〉 =
1√
M

∑
x s.t. f (x)=1

|x〉 .
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Quantum Search Algorithms
Geometric visualization

Question: Intuitively, what is going on in this circuit? How does

this circuit help in pulling out a solution? Why O(
√
N)

repetitions?
Let

|α〉 =
1√

N −M

∑
x s.t. f (x)=0

|x〉 ,

|β〉 =
1√
M

∑
x s.t. f (x)=1

|x〉 .

Observation: |ψ〉 =
√

N−M
N |α〉+

√
M
N |β〉.

Consider the plane defined by the vectors |α〉 and |β〉.
Claim 1: The effect of O on a vector on the plane is reflection
about the vector |α〉.
Claim 2 The effect of (2 |ψ〉 〈ψ| − I ) on a vector on the plane is
reflection about the vector |ψ〉.
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Quantum Search Algorithms
Geometric visualization

Question: Intuitively, what is going on in this circuit? How does this

circuit help in pulling out a solution? Why O(
√
N) repetitions?

Let |α〉 = 1√
N−M

∑
x s.t. f (x)=0 |x〉, and |β〉 = 1√

M

∑
x s.t. f (x)=1 |x〉.

Observation: |ψ〉 =
√

N−M
N |α〉+

√
M
N |β〉.

Consider the plane defined by the vectors |α〉 and |β〉.
Claim 1: The effect of O on a vector on the plane is reflection about
the vector |α〉.
Claim 2 The effect of (2 |ψ〉 〈ψ| − I ) on a vector on the plane is
reflection about the vector |ψ〉.
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Quantum Search Algorithms
Geometric visualization

Let |α〉 = 1√
N−M

∑
x s.t. f (x)=0 |x〉, and |β〉 = 1√

M

∑
x s.t. f (x)=1 |x〉.

Observation: |ψ〉 =
√

N−M
N |α〉+

√
M
N |β〉.

Consider the plane defined by the vectors |α〉 and |β〉.
Claim 1: The effect of O on a vector on the plane is reflection about
the vector |α〉.
Claim 2 The effect of (2 |ψ〉 〈ψ| − I ) on a vector on the plane is
reflection about the vector |ψ〉.

Let cos θ2 =
√

N−M
N . So, |ψ〉 = cos θ2 |α〉+ sin θ

2 |β〉 and

G |ψ〉 = cos 3θ
2 |α〉+ sin 3θ

2 |β〉
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Quantum Search Algorithms
Geometric visualization

Let |α〉 = 1√
N−M

∑
x s.t. f (x)=0 |x〉, and |β〉 = 1√

M

∑
x s.t. f (x)=1 |x〉.

Observation: |ψ〉 =
√

N−M
N |α〉+

√
M
N |β〉.

Consider the plane defined by the vectors |α〉 and |β〉.
Claim 1: The effect of O on a vector on the plane is reflection about
the vector |α〉.
Claim 2 The effect of (2 |ψ〉 〈ψ| − I ) on a vector on the plane is
reflection about the vector |ψ〉.

Let cos θ2 =
√

N−M
N . So, |ψ〉 = cos θ2 |α〉+ sin θ

2 |β〉 and

G |ψ〉 = cos 3θ
2 |α〉+ sin 3θ

2 |β〉
Exercise: Show that G k |ψ〉 = cos (2k+1)θ

2 |α〉+ sin (2k+1)θ
2 |β〉.
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Quantum Search Algorithms
Geometric visualization

Let cos θ2 =
√

N−M
N . So, |ψ〉 = cos θ2 |α〉+ sin θ

2 |β〉 and

G |ψ〉 = cos 3θ
2 |α〉+ sin 3θ

2 |β〉
Exercise: Show that G k |ψ〉 = cos (2k+1)θ

2 |α〉+ sin (2k+1)θ
2 |β〉.

Question: How many Grover iterations are required to sample a
solution with good probability?
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Quantum Search Algorithms
Geometric visualization

Let cos θ2 =
√

N−M
N . So, |ψ〉 = cos θ2 |α〉+ sin θ

2 |β〉 and

G |ψ〉 = cos 3θ
2 |α〉+ sin 3θ

2 |β〉
Exercise: Show that G k |ψ〉 = cos (2k+1)θ

2 |α〉+ sin (2k+1)θ
2 |β〉.

Question: How many Grover iterations are required to sample a
solution with good probability?

Let R = CI

(
arccos

√
M/N

θ

)
, where CI (.) denotes closest integer.

Exercise: Show that if R Grover iterations are executed, then the
probability of measuring a solution is at least 1/2.
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Quantum Search Algorithms
Geometric visualization

Let cos θ2 =
√

N−M
N . So, |ψ〉 = cos θ2 |α〉+ sin θ

2 |β〉 and

G |ψ〉 = cos 3θ
2 |α〉+ sin 3θ

2 |β〉
Exercise: Show that G k |ψ〉 = cos (2k+1)θ

2 |α〉+ sin (2k+1)θ
2 |β〉.

Question: How many Grover iterations are required to sample a
solution with good probability?

Let R = CI

(
arccos

√
M/N

θ

)
, where CI (.) denotes closest integer.

Exercise: Show that if R Grover iterations are executed, then the
probability of measuring a solution is at least 1/2.

Exercise: If M ≤ N/2, then R ≤ dπ4
√

N
M e.
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End
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