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Quantum Computation
Phase estimation — Order finding — Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

o We will solve the factoring problem by reduction to the order
finding problem.

o Theorem 1: Suppose N is an L bit composite number, and x is a
non-trivial solution to the equation x> = 1 (mod N) in the range
1< x < N, that is, neither x =1 (mod N) nor
x = —1 (mod N). Then at least one of gcd(x — 1, N) and
gcd(x + 1, N) is a non-trivial factor of N that can be computed
using O(L3) operations.

o Theorem 2: Suppose N = pi*...p%m is the prime factorisation of
an odd composite positive integer. Let x be an integer chosen
uniformly at random, subject to the requirement that
1< x<N-—1and x is co-prime to N. Let r be the order of x
modulo N. Then

1
Pr[r is even and x/? # —1 (mod N)] > 1 — om
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Quantum Computation

Phase estimation — Order finding — Factoring

Factoring
Given a positive composite integer IV, output a non-trivial factor of N.

Quantum Factoring Algorithm

1. If N is even, return 2 as a factor.

2. Determine if N = aP for integers a, b > 2 and if so, return a.

3. Randomly choose 1 < x < N — 1. If ged(x, N) > 1, then return
ged(x, N).

4. Use the Quantum order-finding algorithm to find the order r of x
modulo M.

5. If r is even and x'/2 # —1 (mod N), then compute

p = gcd(x"/? —1,N) and g = ged(x'/?2 4+ 1, N). If either p or g is a
non-trivial factor of N, then return that factor else return “Failure”.
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Quantum Computation
Phase estimation — Period finding

Period finding problem

Given a boolean function f such that f(x) = f(x + r) for some
unknown 0 < r < 2L, where x,r = {0,1,2, ...} and given a unitary
transform Ur that performs the transformation

Ulx)ly) = |x) |y @ f(x)), determine the least such r > 0.

Period-finding algorithm

1. 10)|0) (Initial state)
2. — 2t—1/2 E2t_1 x) |0) (Create superposition)
3. = 5 22 S X 1£()) (Apply U)
t £x ~
77 Lico Lamo €207 1)
4. — f e ‘(é/r)> > (Apply inverse FT to 1% register)
5 — (E/ ) (Measure first register)
6. = r (Use continued fractions algorithm)
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Quantum Computation
Phase estimation — Period finding

Period finding problem

Given a boolean function f such that f(x) = f(x + r) for some
unknown 0 < r < 2L, where x, r = {0,1,2, ...} and given a unitary
transform Ur that performs the transformation

Ulx) |y) = |x) ly @ f(x)), determine the least such r > 0.

y

Period-finding algorithm

L. |0) ‘0> (Initial state)
2. = 2:/2 Z |X) |0) (Create superposition)
3. o Z o 1X) [F(x)) (Apply U)

201 (2mi)&
_\ﬁgt/Z ZZ:O x=0 L

4. — \% Zz;é ‘(W/\r/)> f(£)> (Apply inverse FT to 1 register)
5. — (¢/r) (Measure first register)
6. —r (Use continued fractions algorithm)

o Claim 1: Let ‘f €)> = LZFI —(2mi) |f(x)). Then
ZX
F(x)) = & Sicg @)% |f(0)).




Juantum Computation
ase estimation — Period finding

o The basic ideas involved in order finding and period finding
seems to be the same.

o Question: Can we generalise the core ideas and design a
canonical algorithm for a very general problem so that order

finding, factoring, period finding etc. are just special cases of
this general problem?

o Yes. The general problem is called the Hidden Subgroup
Problem.

o Before we see the hidden subgroup problem, we will see
another special case: Discrete Logarithm.
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Quantum Computation: Discrete logarithm
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Quantum Computation
Phase estimation — Discrete logarithm

Discrete logarithm problem

Given positive integers a, b, N such that b = a° (mod N) for some
unknown s, find s.

o Question: What is the running time of the naive classical
algorithm?
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Quantum Computation
Phase estimation — Discrete logarithm

Discrete logarithm problem

Given positive integers a, b, N such that b = a° (mod N) for some
unknown s, find s.

o Question: What is the running time of the naive classical
algorithm? Q(N)
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Quantum Computation
Phase estimation — Discrete logarithm

Discrete logarithm problem

Given positive integers a, b, N such that b = a° (mod N) for some
unknown s, find s.

o Consider a bi-variate function f(xi,x) = a®1™2 (mod N).
o Claim 1: f is a periodic function with period (¢, —¢s) for any
integer /.
o So it may be possible for us to pull out s using some of the
previous ideas developed.
o Question: How does discovering s for the above function help us
in solving the discrete logarithm problem?
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Quantum Computation
Phase estimation — Discrete logarithm

Discrete logarithm problem

Given positive integers a, b, N such that b = a° (mod N) for some
unknown s, find s.

o Consider a bi-variate function f(xi,x) = a®1™2 (mod N).
o Claim 1: f is a periodic function with period (¢, —¢s) for any
integer /.
o So it may be possible for us to pull out s using some of the
previous ideas developed.
o Question: How does discovering s for the above function help us
in solving the discrete logarithm problem?
o Main idea: f(x1,x) = b2 (mod N).
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Quantum Computation

Phase estimation — Discrete logarithm

Bi-variate period

Let f be a function such that f(xi,x2) = a2 (mod N) and let r be the
order of a modulo N. Let U be a unitary operator that performs the
transformation: U |x1) [x2) |y) — |x1) [x2) [y & f(x1,x2)). Find s.

Discrete logarithm

1. |0) [0) |0) (Initial state)
2 =5 o Zii;é )2;;(1) [x1) [x2) |0) (Create superposition)
3. = F Yo Yo ba) ) IF(a, %)) (Apply U)

= ﬁzz;ﬂ, 2 éEiﬁ 5 e VR 1 1) ‘f(5€2,52)>
e S [ e ][22 R )] [t )
4. LT [()
5. — ((5%7 (772/)) (Measure register 1, 2)

6. —>s (Use continued fractions algorithm)

("772)> |f(sl2,Z2)> (Apply invFT to register 1,2)

o Claim: Let |1?(€1,€2)> = %Z’ Le-(m)¥ [f(0,/)). Then

r—1
1 N 5lx1+x | A
F0a, ) = 72 3 PR |f(sty, 1))

=0
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Quantum Computation: Hidden Subgroup Problem (HSG)
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Quantum Computation

Hidden Subgroup Problem (HSG)

@ The algorithms for order-finding, factoring, discrete logarithm,
period-finding follow the same general pattern.

o It would be useful if we could extract the main essence and define
a general problem that can be solved using these ideas.

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G — X with the promise that
there is a subgroup H C G such that f assigns a unique value to each
coset of H. Find H.
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Quantum Computation

Hidden Subgroup Problem (HSG)

@ The algorithms for order-finding, factoring, discrete logarithm,
period-finding follow the same general pattern.

o It would be useful if we could extract the main essence and define
a general problem that can be solved using these ideas.

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G — X with the promise that
there is a subgroup H C G such that f assigns a unique value to each
coset of H. Find H.

o Question: Can order-finding, period finding etc. be seen as just a
special case of the HSG problem?
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Quantum Computation
Hidden Subgroup Problem (HSG)

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G — X with the promise that
there is a subgroup H C G such that f assigns a unique value to each
coset of H. Find H.

o Question: Can order-finding, period finding etc. be seen as just a
special case of the HSG problem?

Name | G X H f

Simon | ({0,1}",®) | {0,1}" | {0,s} f(x®s)=f(x)

Order | (Zn,+) a {0,r,2r,...} | f(x) = a*

finding JEZ, |reéG f(x+r)=f(x)
a"=1
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Quantum Computation
Hidden Subgroup Problem (HSG)

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G — X with the promise that
there is a subgroup H C G such that f assigns a unique value to each
coset of H. Find H.

o Question: How does a Quantum computer solve the hidden
subgroup problem?

Quantum algorithm for HSG

o Create uniform superposition iG] > gcc l8) 1f(8))-

Measure the second register to create a uniform superposition
over a coset of H: \/Lﬁ Y ohen B+ k).

Apply Fourier transform

Measure and extract generating set of the subgroup H.

©

()

©
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Quantum Computation
Hidden Subgroup Problem (HSG)

Hidden Subgroup Problem (HSG)

Given a group G and a function f : G — X with the promise that
there is a subgroup H C G such that f assigns a unique value to each
coset of H. Find H.

@ Question: How does a Quantum computer solve the hidden
subgroup problem?

Quantum algorithm for HSG

: P 1
o Create uniform superposition Wi > gec 18) 1f(8))-
o Measure the second register to create a uniform superposition
over a coset of H: ﬁZheH |h+ k).
o Apply Fourier transform
o Measure and extract generating set of the subgroup H.

o Question: How does Fourier transform help?
o Shift-invariance property: If 3°,canlh) = 3, ¢ Gg |g). then

b
Shenanlh+k) =Y, cc e a, |g).
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Quantum Search Algorithms
The oracle

Search problem

Let N=2"and let f: {0,..., N — 1} — {0,1} be a function that has
1 < M < N solutions. That is, there are M values for which f
evaluates to 1. Find one of the solutions.

o Question: What is the running time for the classical solution?
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Quantum Search Algorithms
The oracle

Search problem

Let N=2"and let f: {0,..., N — 1} — {0,1} be a function that has
1 < M < N solutions. That is, there are M values for which f
evaluates to 1. Find one of the solutions.

o Question: What is the running time for the classical solution?

o(N)
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Quantum Search Algorithms
The oracle

Search problem

Let N =2" and let f: {0,...., N — 1} — {0,1} be a function that has
1 < M < N solutions. That is, there are M values for which f
evaluates to 1. Find one of the solutions.

o Let O be a quantum oracle with the following behaviour:
@}
x)1q) = Ix) lg & f(x)).

H 0)—|1 @ 0)—|1
o Claim 1: |x) (%) 2 (—1)f ) (\ >f2\ ))
o We will always use the state |—) as the second register in the

discussion. So, we may as well describe the behaviour of the
oracle O in short as:

) - (—1)1 ) ).

o Claim 2: There is a quantum algorithm that applies the search
oracle O, O(\/%) times in order to obtain a solution.
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uantum Search Algorithms

e Grover operator

o Here is the schematic circuit for quantum search:
OG/N)
|

n qubits —
intialized m{ - H®n T 1

0)

Oracle | ]
workspace : :

o Where G, called the Grover operator or Grover iteration, is:

n qubits {__ ] H®" I Phase: T e =

T Oracle | %)= == [x) = BE
orace { .
workspace |||

)= 0 l)




Juantum Search Algorithms
e Grover operator

o Where G, called the Grover operator or Grover iteration, is:

n qubits {77 | H® [ Phase: He®"

L — | |x>—> —(=1)% |x>— 1

Oracle
Oracle N
workspace :

|x) = =1/

x)

o Exercise: Show that the unitary operator corresponding to the
phase shift in the Grover iteration is (21]0) (0| — /).
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antum Search Algorithms
e Grover operator

o Where G, called the Grover operator or Grover iteration, is:

n qubits {77 1 He" TPhase: | e =
T I [ = i =

Oracle
Oracle N
workspace :

9= 0l

o Exercise: Show that the unitary operator corresponding to the
phase shift in the Grover iteration is (20) (0] — /).
N-1
o Let [¢) = \%N D ow—o [X)-
o Exercise: The operation after the oracle call in the Grover
operator, that is H®"(2]0) (0] — I)H®", may be written as

2|y (| = 1.
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antum Search Algorithms
e Grover operator

o Where G, called the Grover operator or Grover iteration, is:

n qubits {__ 7 o —;Phase: — e __

|- | - - |x> - _(_1)% |x>— .

Oracle
Oracle T
workspace B

) = (1))

o Exercise: Show that the unitary operator corresponding to the
phase shift in the Grover iteration is (2|0) (0| — /).

o Let [¢) = 2% 32355 |x).

o Exercise: The operation after the oracle call in the Grover
operator, that is H®"(2]0) (0] — /)H®", may be written as
2[¢) (] — 1.

o The Grover operator G can then be written as

G = (2[w) (| ~ 1O



antum Search Algorithms
e Grover operator

o Where G, called the Grover operator or Grover iteration, is:

n qubits {7* | H®” [ Phase: H®” *k

- - ‘X)—’—(—l)h‘“‘x>—' .

|| Oracle

9= 01

Oracle T
workspace B

o Exercise: Show that the unitary operator corresponding to the

phase shift in the Grover iteration is (2|0) (0] — /).
N—

o Let [¢) = 75 Y050 [x).

o Exercise: The operation after the oracle call in the Grover
operator, that is H9"(2]0) (0] — /)H®", may be written as
2145) (] — 1.

o The Grover operator G can then be written as
G = (214) (6] - 1)O.

o Exercise: Show that the operation (2 ]¢) ()| — I) applied to a
general state Y, ay |k) gives >, (—a + 2(a)) |k).
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Juantum Search Algorithms

e Grover operator

n qubits —
intialized m{ —

Oracle H T
workspace : :

s {
Oracle
workspace

o Question: Intuitively, what is going on in this circuit? How does this
circuit help in pulling out a solution? Why O(v/N) repetitions?

‘X>_)(_1)f1r)|x>

OGN)
( |
H®n
G G | G
7:: He [T Phase : ‘ : HE" [
Oracle ] ‘x) === ‘x>* -
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JQuantum Search Algorithms
seometric visualization

@ Question: Intuitively, what is going on in this circuit? How does
this circuit help in pulling out a solution? Why O(v/N)
repetitions?

o Let

1
) = N =M Z X))

x s.t. f(x)=0

>

x s.t. f(x)=1

16) =

-
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Juantum Search Algorithms

eometric visualization

o Question: Intuitively, what is going on in this circuit? How does
this circuit help in pulling out a solution? Why O(v/N)
repetitions?

o Let

1
la) = \/ﬁ Z x),

x s.t. f(x)=0
1
8) = —= > .
\/M x s.t. f(x)=1

o Observation: [¢) = /M [} + \/ |5).

o Consider the plane defined by the vectors |a) and |5).

o Claim 1: The effect of O on a vector on the plane is reflection
about the vector |a).

o Claim 2 The effect of (2]¢) ()| — I) on a vector on the plane is
reflection about the vector |¢).
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JQuantum Search Algorithms

seometric visualization

o Question: Intuitively, what is going on in this circuit? How does this
circuit help in pulling out a solution? Why O(v/N) repetitions?

o Let fa) = ol 3o . r(ymo 1X)r and 18) = = 30, (o =t X

Observation: |¢) = w |y + \/%\@

Consider the plane defined by the vectors |a) and |3).

Claim 1: The effect of O on a vector on the plane is reflection about

the vector |a).

o Claim 2 The effect of (2|¢) (1| — I) on a vector on the plane is
reflection about the vector |¢)).

18)

©

© ©
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Juantum Search Algorithms
eometric visualization

o Let |a) = \/—Exst f(x) olx) and [B) = \ﬁzxst F(x)= 1 1X).

o Observation: [¢)) = /MM |a) + W|ﬁ

o Consider the plane deflned by the vectors |a) and |3).

o Claim 1: The effect of O on a vector on the plane is reflection about
the vector |a).

o Claim 2 The effect of (2|¢) ()| — I) on a vector on the plane is
reflection about the vector [1)).

B)

: olg)

o Let cosg = ) :cosg|a)+sin%|/j) and

G [¢) = cos % |a) + sin % |8)
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Juantum Search Algorithms
eometric visualization

o Let |a> ﬁszt f(x 0‘X> and |B> \/LEX s.t. f(x)=1 |X>

o Observation: [¢)) = \/ \Oé \/;W

o Consider the plane deﬁned by the vectors |a) and |3).

o Claim 1: The effect of O on a vector on the plane is reflection about

the vector |a).

o Claim 2 The effect of (2]¢) (¢)| — I) on a vector on the plane is

reflection about the vector [).
8)

o Let cosg = 1/ N’M . So, W) = cos% |a) + sin g |B) and

614) = cos 2 o) +sin 2 [3)
o Exercise: Show that G¥ |1/)) = cos
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JQuantum Search Algorithms
seometric visualization

18)

o Let cos§ = /MM So, |¢):cos%|a>+sin%\ﬂ> and

G |[¢) = cos 3¢ 2 |a) + sin 3¢ 918)
o Exercise: Show that Gk |¢) = cosw | + sin (2k+1 |8).
o Question: How many Grover iterations are required to sample a
solution with good probability?
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ntum Search Algorithms

eometric visualization

18)

o)

k Olg)

o Let cosg = M So, |¢> =cos3 9 1a) + sin 5 ¢18) and
Gly) =cos T |a> +sin 2 (3)

o Exercise: Show that Gk |1/J> = cos (2k;1) |} + sin =522 2k+1 1B).

o Question: How many Grover iterations are required to sample a

solution with good probability?
Let R=CI % VM/N) where CI(.) denotes closest integer.

©

©

Exercise: Show that if R Grover iterations are executed, then the
probability of measuring a solution is at least 1/2.

Ragesh Jaiswal, CSE, IIT Delhi



Juantum Search Algorithms
eometric visualization

B)

0lg)

Let cos § = /XM, So, |1/) = cos § |a) +sin §|B) and
G [¢) = cos ¥ |a) +sin 3 |B)
o Exercise: Show that G* \1/1) = cos (2,‘;1)6 |a) + sin (2,‘“)9 13).
Question: How many Grover iterations are required to sample a
solution with good probability?

arccos /M/N
Let R=Cl | ———

©

©

©

), where CI(.) denotes closest integer.

o Exercise: Show that if R Grover iterations are executed, then the
probability of measuring a solution is at least 1/2.

o Exercise: If M < N/2, then R < [%\/%1.
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