COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Factoring

$\begin{array}{l} \textbf{Quantum Computation} \\ \textbf{Phase estimation} \rightarrow \textbf{Order finding} \rightarrow \textbf{Factoring} \end{array}$

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

- We will solve the factoring problem by reduction to the order finding problem.
- Theorem 1: Suppose N is an L bit composite number, and x is a non-trivial solution to the equation $x^2 = 1 \pmod{N}$ in the range $1 \le x \le N$, that is, neither $x = 1 \pmod{N}$ nor $x = -1 \pmod{N}$. Then at least one of gcd(x 1, N) and gcd(x + 1, N) is a non-trivial factor of N that can be computed using $O(L^3)$ operations.
- <u>Theorem 2</u>: Suppose $N = p_1^{\alpha_1} \dots p_m^{\alpha_m}$ is the prime factorisation of an odd composite positive integer. Let x be an integer chosen uniformly at random, subject to the requirement that $1 \le x \le N 1$ and x is co-prime to N. Let r be the order of x modulo N. Then

$$\Pr[r \text{ is even and } x^{r/2} \neq -1 \pmod{N} \ge 1 - \frac{1}{2^m}$$

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

Quantum Factoring Algorithm

- 1. If N is even, return 2 as a factor.
- 2. Determine if $N = a^b$ for integers $a, b \ge 2$ and if so, return a.
- 3. Randomly choose $1 \le x \le N 1$. If gcd(x, N) > 1, then return gcd(x, N).

4. Use the Quantum order-finding algorithm to find the order r of x modulo N.

5. If r is even and $x^{r/2} \neq -1 \pmod{N}$, then compute

 $p = gcd(x^{r/2} - 1, N)$ and $q = gcd(x^{r/2} + 1, N)$. If either p or q is a non-trivial factor of N, then return that factor else return "Failure".

Quantum Computation: Period finding

Period finding problem

Given a boolean function f such that f(x) = f(x + r) for some unknown $0 < r < 2^L$, where $x, r = \{0, 1, 2, ...\}$ and given a unitary transform U_f that performs the transformation $U|x\rangle |y\rangle \rightarrow |x\rangle |y \oplus f(x)\rangle$, determine the least such r > 0.

Period-finding algorithm

1.	$\ket{0}\ket{0}$	(Initial state)
2.	$ ightarrow rac{1}{2^{t/2}} \sum_{x=0}^{2^t-1} \ket{x} \ket{0}$	(Create superposition)
3.	$ ightarrow rac{1}{2^{t/2}} \sum_{x=0}^{2^t-1} \ket{x} \ket{f(x)}$	(Apply U)
	$pprox rac{1}{\sqrt{r}2^{t/2}} \sum_{\ell=0}^{r-1} \sum_{x=0}^{2^t-1} e^{(2\pi i) t}$	$\left \frac{\ell x}{r} \left x ight angle \left \hat{f}(\ell) ight angle ight angle$
4.	$ ightarrow rac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1} \left \widetilde{(\ell/r)} ight angle \left \widehat{f}(\ell) ight angle$	(Apply inverse FT to 1^{st} register)
5.	$\rightarrow \widetilde{(\ell/r)}$	(Measure first register)
6.	$\rightarrow r$	(Use continued fractions algorithm)

Quantum Computation Phase estimation \rightarrow Period finding

Period finding problem

Given a boolean function f such that f(x) = f(x + r) for some unknown $0 < r < 2^L$, where $x, r = \{0, 1, 2, ...\}$ and given a unitary transform U_f that performs the transformation $U |x\rangle |y\rangle \rightarrow |x\rangle |y \oplus f(x)\rangle$, determine the least such r > 0.

• Claim 1: Let
$$\left| \hat{f}(\ell) \right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-(2\pi i)\frac{\ell x}{r}} \left| f(x) \right\rangle$$
. Then $\left| f(x) \right\rangle = \frac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1} e^{(2\pi i)\frac{\ell x}{r}} \left| \hat{f}(\ell) \right\rangle$.

- The basic ideas involved in order finding and period finding seems to be the same.
- Question: Can we generalise the core ideas and design a canonical algorithm for a very general problem so that order finding, factoring, period finding etc. are just special cases of this general problem?
 - Yes. The general problem is called the Hidden Subgroup Problem.
- Before we see the hidden subgroup problem, we will see another special case: Discrete Logarithm.

Quantum Computation: Discrete logarithm

Given positive integers a, b, N such that $b = a^s \pmod{N}$ for some unknown s, find s.

• <u>Question</u>: What is the running time of the naive classical algorithm?

Given positive integers a, b, N such that $b = a^s \pmod{N}$ for some unknown s, find s.

• Question: What is the running time of the naive classical algorithm? $\Omega(N)$

Given positive integers a, b, N such that $b = a^s \pmod{N}$ for some unknown s, find s.

- Consider a bi-variate function $f(x_1, x_2) = a^{sx_1+x_2} \pmod{N}$.
- Claim 1: f is a periodic function with period $(\ell, -\ell s)$ for any integer ℓ .
 - So it may be possible for us to pull out *s* using some of the previous ideas developed.
- <u>Question</u>: How does discovering *s* for the above function help us in solving the discrete logarithm problem?

Given positive integers a, b, N such that $b = a^s \pmod{N}$ for some unknown s, find s.

- Consider a bi-variate function $f(x_1, x_2) = a^{sx_1+x_2} \pmod{N}$.
- <u>Claim 1</u>: *f* is a periodic function with period (ℓ, −ℓs) for any integer ℓ.
 - So it may be possible for us to pull out *s* using some of the previous ideas developed.
- Question: How does discovering *s* for the above function help us in solving the discrete logarithm problem?
 - Main idea: $f(x_1, x_2) \equiv b^{x_1} a^{x_2} \pmod{N}$.

$\begin{array}{l} Quantum \ Computation \\ Phase \ estimation \ \rightarrow \ Discrete \ logarithm \end{array}$

Bi-variate period

Let *f* be a function such that $f(x_1, x_2) = a^{sx_1+x_2} \pmod{N}$ and let *r* be the order of *a* modulo *N*. Let *U* be a unitary operator that performs the transformation: $U |x_1\rangle |x_2\rangle |y\rangle \rightarrow |x_1\rangle |x_2\rangle |y \oplus f(x_1, x_2)\rangle$. Find *s*.

Discrete logarithm

$$\begin{split} &1. &|0\rangle &|0\rangle &(\text{Initial state}) \\ &2. &\rightarrow \frac{1}{2^{T}} \sum_{x_{1}=0}^{2^{t}-1} \sum_{x_{2}=0}^{2^{t}-1} &|x_{1}\rangle &|x_{2}\rangle &|0\rangle &(\text{Create superposition}) \\ &3. &\rightarrow \frac{1}{2^{T}} \sum_{x_{1}=0}^{2^{t}-1} \sum_{x_{2}=0}^{2^{t}-1} &|x_{1}\rangle &|x_{2}\rangle &|f(x_{1},x_{2})\rangle &(\text{Apply }U) \\ &= \frac{1}{\sqrt{r^{2^{T}}}} \sum_{\ell_{2}=0}^{\ell-1} \sum_{x_{1}=0}^{2^{t}-1} \sum_{x_{2}=0}^{2^{t}-1} e^{(2\pi i)\frac{s^{\ell_{2}x_{1}}+\ell_{2}x_{2}}{r}} &|x_{1}\rangle &|x_{2}\rangle &|\hat{f}(s\ell_{2},\ell_{2})\rangle \\ &4. &\rightarrow \frac{1}{\sqrt{r}} \sum_{\ell_{2}=0}^{\ell-1} \left[\sum_{r=0}^{2^{t}-1} e^{(2\pi i)\frac{s^{\ell_{2}x_{1}}}{r}} &|x_{1}\rangle \right] \left[\sum_{x_{2}=0}^{2^{t}-1} e^{(2\pi i)\frac{\ell_{2}x_{2}}{r}} &|x_{2}\rangle \right] &|\hat{f}(s\ell_{2},\ell_{2})\rangle \\ &5. &\rightarrow \left(\underbrace{\left(\frac{s\ell_{2}}{r}\right)} & \left(\underbrace{\left(\frac{s\ell_{2}}{r}\right)} \right) & \left(\underbrace{\left(\frac{s\ell_{2}}{r}\right)} \right) & (\text{Measure register 1, 2)} \\ &6. &\rightarrow s & (\text{Use continued fractions algorithm}) \\ \end{aligned}$$

• Claim: Let
$$\left| \hat{f}(\ell_1, \ell_2) \right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} e^{-(2\pi i)\frac{\ell_2 j}{r}} \left| f(0, j) \right\rangle$$
. Then

$$|f(x_1, x_2)\rangle = \frac{1}{\sqrt{r}} \sum_{\ell_2=0}^{r-1} e^{(2\pi i)\frac{s\ell_2 x_1 + \ell_2 x_2}{r}} \left| \hat{f}(s\ell_2, \ell_2) \right\rangle.$$

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation: Hidden Subgroup Problem (HSG)

Quantum Computation Hidden Subgroup Problem (HSG)

- The algorithms for order-finding, factoring, discrete logarithm, period-finding follow the same general pattern.
- It would be useful if we could extract the main essence and define a general problem that can be solved using these ideas.

Hidden Subgroup Problem (HSG)

Given a group G and a function $f : G \to X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

Quantum Computation Hidden Subgroup Problem (HSG)

- The algorithms for order-finding, factoring, discrete logarithm, period-finding follow the same general pattern.
- It would be useful if we could extract the main essence and define a general problem that can be solved using these ideas.

Hidden Subgroup Problem (HSG)

Given a group G and a function $f : G \to X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

• <u>Question</u>: Can order-finding, period finding etc. be seen as just a special case of the HSG problem?

Hidden Subgroup Problem (HSG)

Given a group G and a function $f : G \to X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

• <u>Question</u>: Can order-finding, period finding etc. be seen as just a special case of the HSG problem?

Name	G	X	Н	f
Simon	$(\{0,1\}^n,\oplus)$	$\{0,1\}^n$	{0, <i>s</i> }	$f(x\oplus s)=f(x)$
Order	$(\mathbb{Z}_N,+)$	a ^j	$\{0, r, 2r,\}$	$f(x) = a^x$
finding		$j \in \mathbb{Z}_r$	$r \in G$	f(x+r)=f(x)
		$a^r = 1$		

Hidden Subgroup Problem (HSG)

Given a group G and a function $f : G \to X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

• <u>Question</u>: How does a Quantum computer solve the hidden subgroup problem?

Quantum algorithm for HSG

- Create uniform superposition $\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |f(g)\rangle$.
- Measure the second register to create a uniform superposition over a coset of *H*: $\frac{1}{\sqrt{H}} \sum_{h \in H} |h + k\rangle$.
- Apply Fourier transform
- Measure and extract generating set of the subgroup H.

Hidden Subgroup Problem (HSG)

Given a group G and a function $f : G \to X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

• <u>Question</u>: How does a Quantum computer solve the hidden subgroup problem?

Quantum algorithm for HSG

- Create uniform superposition $\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |f(g)\rangle$.
- Measure the second register to create a uniform superposition over a coset of *H*: $\frac{1}{\sqrt{H}}\sum_{h\in H} |h+k\rangle$.
- Apply Fourier transform
- Measure and extract generating set of the subgroup *H*.

• Question: How does Fourier transform help?

• Shift-invariance property: If $\sum_{h \in H} \alpha_h | h \rangle \to \sum_{g \in G} \tilde{\alpha}_g | g \rangle$, then $\sum_{h \in H} \alpha_h | h + k \rangle \to \sum_{g \in G} e^{(2\pi i) \frac{g^k}{|G|}} \tilde{\alpha}_g | g \rangle$. Quantum Search Algorithms

Quantum Search Algorithms The oracle

Search problem

Let $N = 2^n$ and let $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ be a function that has $1 \le M \le N$ solutions. That is, there are M values for which f evaluates to 1. Find one of the solutions.

• Question: What is the running time for the classical solution?

Quantum Search Algorithms The oracle

Search problem

Let $N = 2^n$ and let $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ be a function that has $1 \le M \le N$ solutions. That is, there are M values for which f evaluates to 1. Find one of the solutions.

• Question: What is the running time for the classical solution? $\overline{O(N)}$

Quantum Search Algorithms The oracle

Search problem

Let $N = 2^n$ and let $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ be a function that has $1 \le M \le N$ solutions. That is, there are M values for which f evaluates to 1. Find one of the solutions.

 $\bullet\,$ Let ${\mathcal O}$ be a quantum oracle with the following behaviour:

$$|x\rangle |q\rangle \stackrel{\mathcal{O}}{\rightarrow} |x\rangle |q \oplus f(x)\rangle$$
.

- <u>Claim 1</u>: $|x\rangle \left(\frac{|0\rangle |1\rangle}{\sqrt{2}}\right) \xrightarrow{\mathcal{O}} (-1)^{f(x)} |x\rangle \left(\frac{|0\rangle |1\rangle}{\sqrt{2}}\right)$
- We will always use the state $|-\rangle$ as the second register in the discussion. So, we may as well describe the behaviour of the oracle ${\cal O}$ in short as:

$$|x\rangle \stackrel{\mathcal{O}}{\longrightarrow} (-1)^{f(x)} |x\rangle$$
.

• <u>Claim 2</u>: There is a quantum algorithm that applies the search oracle \mathcal{O} , $O(\sqrt{\frac{N}{M}})$ times in order to obtain a solution.

• Here is the schematic circuit for quantum search:

• Where G, called the Grover operator or Grover iteration, is:

• Where G, called the Grover operator or Grover iteration, is:

 Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is (2 |0⟩ ⟨0| − 1).

• Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is (2 |0⟩ ⟨0| − 1).
- Let $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle \langle 0| I)H^{\oplus n}$, may be written as $2|\psi\rangle \langle \psi| I$.

• Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is (2 |0⟩ ⟨0| − 1).
- Let $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle \langle 0| I)H^{\oplus n}$, may be written as $2|\psi\rangle \langle \psi| I$.
- The Grover operator G can then be written as $G = (2 |\psi\rangle \langle \psi| I) O$.

• Where G, called the Grover operator or Grover iteration, is:

• Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2 | 0 \rangle \langle 0 | - I)$.

• Let
$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$
.

- Exercise: The operation after the oracle call in the Grover operator, that is H^{⊕n}(2|0⟩ ⟨0| − I)H^{⊕n}, may be written as 2 |ψ⟩ ⟨ψ| − I.
- The Grover operator *G* can then be written as $G = (2 |\psi\rangle \langle \psi| I) \mathcal{O}.$
- <u>Exercise</u>: Show that the operation $(2 |\psi\rangle \langle \psi| I)$ applied to a general state $\sum_{k} \alpha_{k} |k\rangle$ gives $\sum_{k} (-\alpha_{k} + 2\langle \alpha \rangle) |k\rangle$.

• <u>Question</u>: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?

• <u>Question</u>: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?

Let

$$\begin{aligned} |\alpha\rangle &= \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle, \\ |\beta\rangle &= \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle. \end{aligned}$$

• Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?

Let

$$\begin{aligned} |\alpha\rangle &= \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle, \\ |\beta\rangle &= \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle. \end{aligned}$$

• Observation:
$$|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle.$$

- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- <u>Claim 1</u>: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- <u>Claim 2</u> The effect of $(2 |\psi\rangle \langle \psi| I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

- <u>Question</u>: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?
- Let $|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle$, and $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle$.
- <u>Observation</u>: $|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle.$
- \bullet Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle.$
- Claim 1: The effect of ${\cal O}$ on a vector on the plane is reflection about the vector $|\alpha\rangle.$
- Claim 2 The effect of $(2 |\psi\rangle \langle \psi| I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

Quantum Search Algorithms

Geometric visualization

• Let
$$|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle$$
, and $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle$.

- <u>Observation</u>: $|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle$.
- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- Claim 1: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- <u>Claim 2</u> The effect of $(2 |\psi\rangle \langle \psi| I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

• Let
$$|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle$$
, and $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle$.

• Observation:
$$|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle.$$

- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- <u>Claim 1</u>: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- Claim 2 The effect of $(2 |\psi\rangle \langle \psi| I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

• Let $\cos \frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle = \cos \frac{\theta}{2} |\alpha\rangle + \sin \frac{\theta}{2} |\beta\rangle$ and $G |\psi\rangle = \cos \frac{3\theta}{2} |\alpha\rangle + \sin \frac{3\theta}{2} |\beta\rangle$

• <u>Exercise</u>: Show that $G^k |\psi\rangle = \cos \frac{(2k+1)\theta}{2} |\alpha\rangle + \sin \frac{(2k+1)\theta}{2} |\beta\rangle$.

 <u>Question</u>: How many Grover iterations are required to sample a solution with good probability?

- Let $\cos \frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle = \cos \frac{\theta}{2} |\alpha\rangle + \sin \frac{\theta}{2} |\beta\rangle$ and $G |\psi\rangle = \cos \frac{3\theta}{2} |\alpha\rangle + \sin \frac{3\theta}{2} |\beta\rangle$
- <u>Exercise</u>: Show that $G^k |\psi\rangle = \cos \frac{(2k+1)\theta}{2} |\alpha\rangle + \sin \frac{(2k+1)\theta}{2} |\beta\rangle$.
- <u>Question</u>: How many Grover iterations are required to sample a solution with good probability?
- Let $R = CI\left(\frac{\arccos\sqrt{M/N}}{\theta}\right)$, where CI(.) denotes closest integer.
- Exercise: Show that if *R* Grover iterations are executed, then the probability of measuring a solution is at least 1/2.

Quantum Search Algorithms

Geometric visualization

- Let $\cos \frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle = \cos \frac{\theta}{2} |\alpha\rangle + \sin \frac{\theta}{2} |\beta\rangle$ and $G |\psi\rangle = \cos \frac{3\theta}{2} |\alpha\rangle + \sin \frac{3\theta}{2} |\beta\rangle$
- <u>Exercise</u>: Show that $G^k |\psi\rangle = \cos \frac{(2k+1)\theta}{2} |\alpha\rangle + \sin \frac{(2k+1)\theta}{2} |\beta\rangle$.
- <u>Question</u>: How many Grover iterations are required to sample a solution with good probability?

• Let
$$R = CI\left(\frac{\arccos\sqrt{M/N}}{\theta}\right)$$
, where $CI(.)$ denotes closest integer.

- Exercise: Show that if *R* Grover iterations are executed, then the probability of measuring a solution is at least 1/2.
- Exercise: If $M \le N/2$, then $R \le \lceil \frac{\pi}{4} \sqrt{\frac{N}{M}} \rceil$.

End

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information