## COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Order finding

- Given integers N > x > 0 such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that  $x^r = 1 \pmod{N}$ .
- Exercise: What is the order of 5 modulo 21?

- Given integers N > x > 0 such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that  $x^r = 1 \pmod{N}$ .
- Exercise: What is the order of 5 modulo 21? 6

## Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

 <u>Exercise</u>: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N?

- Given integers N > x > 0 such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that  $x^r = 1 \pmod{N}$ .
- Exercise: What is the order of 5 modulo 21? 6

## Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

- <u>Exercise</u>: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N? Yes
- Exercise: Is it an efficient algorithm?

- Given integers N > x > 0 such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that  $x^r = 1 \pmod{N}$ .
- Exercise: What is the order of 5 modulo 21? 6

## Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

- <u>Exercise</u>: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N? Yes
- Exercise: Is it an efficient algorithm?
- Let  $L = \lceil \log n \rceil$ . The number of bits needed to specify the problem is O(L). So, an efficient algorithm should have running time that is polynomial in L.

Given co-prime integers N > x > 0, compute the order of x modulo N.

ullet Consider the operator U that has the following behaviour:

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

• Exercise: Show that *U* is unitary.

Given co-prime integers N > x > 0, compute the order of x modulo N.

ullet Consider the operator U that has the following behaviour:

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

- <u>Exercise</u>: Show that *U* is unitary.
- <u>Exercise</u>: Show that the states defined by

$$|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} |x^k \pmod{N}\rangle$$

are the eigenstates of U. Find the corresponding eigenvalues.



Given co-prime integers N > x > 0, compute the order of x modulo N.

ullet Consider the operator U that has the following behaviour:

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

• Exercise summary: Let  $|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} |x^k \pmod{N}\rangle$  be an eigenstate of U. Then  $U|u_s\rangle = e^{(2\pi i)\frac{s}{r}} |u_s\rangle$ 

Given co-prime integers N > x > 0, compute the order of x modulo N.

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

- Exercise summary: Let  $|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} |x^k \pmod{N}\rangle$  be an eigenstate of U. Then  $U|u_s\rangle = e^{(2\pi i)\frac{s}{r}} |u_s\rangle$
- Main idea for determining r: We will use phase estimation to get an estimate on  $\frac{s}{r}$  and then obtain r from it.

Given co-prime integers N > x > 0, compute the order of x modulo N.

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

- Exercise summary: Let  $|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} |x^k \pmod{N}\rangle$  be an eigenstate of U. Then  $U|u_s\rangle = e^{(2\pi i)\frac{s}{r}} |u_s\rangle$
- Main idea for determining r: We will use phase estimation to get an estimate on  $\frac{s}{r}$  and then obtain r from it.
  - How do we implement controlled  $U^{2^{i}}$ ?
  - How do we prepare an eigenstate  $|u_s\rangle$ ?

Given co-prime integers N > x > 0, compute the order of x modulo N.

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

- Exercise summary: Let  $|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} |x^k \pmod{N}\rangle$  be an eigenstate of U. Then  $U|u_s\rangle = e^{(2\pi i)\frac{s}{r}} |u_s\rangle$
- Main idea for determining r: We will use phase estimation to get an estimate on  $\frac{s}{r}$  and then obtain r from it.
  - How do we implement controlled  $U^{2^j}$ ? Modular exponentiation
  - How do we prepare an eigenstate  $|u_s\rangle$ ?

## Modular exponentiation

Given  $|z\rangle |y\rangle$ , design a circuit that ends in the state  $|z\rangle |x^zy \pmod{N}\rangle$ .

- What we wanted to do was  $|z\rangle |y\rangle \rightarrow |z\rangle U^{z_t 2^{t-1}}...U^{z_1 2^0} |y\rangle$  but then this is the same as  $|z\rangle |x^z y \pmod{N}$ .
- Question: Suppose we work with the first register being of size  $t = 2L + 1 + \lceil \log(2 + \frac{1}{2\varepsilon}) \rceil = O(L)$ . What would be the size of the circuit?

## Modular exponentiation

Given  $|z\rangle |y\rangle$ , design a circuit that ends in the state  $|z\rangle |x^zy \pmod{N}\rangle$ .

- What we wanted to do was  $|z\rangle |y\rangle \rightarrow |z\rangle U^{z_t 2^{t-1}}...U^{z_1 2^0} |y\rangle$  but then this is the same as  $|z\rangle |x^z y \pmod{N}$ .
- Question: Suppose we work with the first register being of size  $t = 2L + 1 + \lceil \log(2 + \frac{1}{2\varepsilon}) \rceil = O(L)$ . What would be the size of the circuit?  $O(L^3)$

Given co-prime integers N > x > 0, compute the order of x modulo N.

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

- Exercise summary: Let  $|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} |x^k \pmod{N}\rangle$  be an eigenstate of U. Then  $U|u_s\rangle = e^{(2\pi i)\frac{s}{r}} |u_s\rangle$
- Main idea for determining r: We will use phase estimation to get an estimate on  $\frac{s}{r}$  and then obtain r from it.
  - How do we implement controlled  $U^{2^j}$ ? Modular exponentiation
  - How do we prepare an eigenstate  $|u_s\rangle$ ?
    - We work with  $|1\rangle$  as the first register since  $\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|u_s\rangle=|1\rangle$ .



## Quantum Computation

Phase estimation → Order-finding

### Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

- Exercise summary: Let  $|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} |x^k \pmod{N}\rangle$  be an eigenstate of U. Then  $U|u_s\rangle = e^{(2\pi i)\frac{s}{r}} |u_s\rangle$
- Main idea for determining r: We will use phase estimation to get an estimate on  $\frac{s}{r}$  and then obtain r from it.
  - How do we implement controlled  $U^{2^j}$ ? Modular exponentiation
  - How do we prepare an eigenstate  $|u_s\rangle$ ?
    - We work with  $|1\rangle$  as the first register since  $\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|u_s\rangle=|1\rangle$ .
- So, we will argue that for each  $0 \le s \le r-1$ , we will obtain an estimate of  $\varphi \approx \frac{s}{r}$  accurate to 2L+1 bits with probability at least  $\frac{(1-\varepsilon)}{r}$ .



Given co-prime integers N > x > 0, compute the order of x modulo N.

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

- Exercise summary: Let  $|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} |x^k \pmod{N}\rangle$  be an eigenstate of U. Then  $U|u_s\rangle = e^{(2\pi i)\frac{s}{r}} |u_s\rangle$
- Main idea for determining r: We will use phase estimation to get an estimate on  $\frac{s}{r}$  and then obtain r from it.
  - How do we implement controlled  $U^{2^j}$ ? Modular exponentiation
  - How do we prepare an eigenstate |u<sub>s</sub>>?
    - We work with  $|1\rangle$  as the first register since  $\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|u_s\rangle=|1\rangle$ .
- So, we will argue that for each  $0 \le s \le r-1$ , we will obtain an estimate of  $\varphi \approx \frac{s}{r}$  accurate to 2L+1 bits with probability at least  $(1-\varepsilon)$ 
  - Question: How do we extract r from this? Continued fractions



## Digression: Continued fractions

## Continued fraction

A finite simple continued fraction is defined by a collection of positive integers  $a_0, ..., a_N$ :

$$[a_0,...,a_N] \equiv a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{... + \frac{1}{a_N}}}}$$

The  $n^{\text{th}}$  convergent  $(0 \le n \le N)$  of this continued fraction is defined to be  $[a_0, ..., a_n]$ .

- Theorem: Suppose  $x \ge 1$  is a rational number. Then x has a representation as a continued fraction,  $x = [a_0, ..., a_N]$ . This may be found by the continued fraction algorithm.
- Exercise: Find the continued fraction expansion of  $\frac{31}{13}$ .
- Question: What is the running time for the continued fractions algorithm for any given rational number  $\frac{p}{a} \ge 1$ ?

#### Continued fraction

A finite simple continued fraction is defined by a collection of positive integers  $a_0,...,a_N$ :

$$[a_0,...,a_N] \equiv a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{... + \frac{1}{a_N}}}}$$

The  $n^{\rm th}$  convergent  $(0 \le n \le N)$  of this continued fraction is defined to be  $[a_0,...,a_n]$ .

- Question: What is the running time for the continued fractions algorithm for any given rational number  $\frac{\rho}{a} \geq 1$ ?
- Theorem: Let  $a_0,...,a_N$  be a sequence of positive numbers. Then  $[a_0,...,a_n]=\frac{p_n}{q_n}$ , where  $p_n$  and  $q_n$  are real numbers defined inductively by  $p_0\equiv 0$ ,  $q_0\equiv 1$ ,  $p_1\equiv 1+a_0a_1$ ,  $q_1\equiv a_1$ , and for 2< n< N.

$$p_n \equiv a_n p_{n-1} + p_{n-2}$$
  
 $q_n \equiv a_n q_{n-1} + q_{n-2}$ 

In the case when  $a_j$  are positive integers, so too are  $p_j$  and  $q_j$  and moreover  $q_np_{n-1}-p_nq_{n-1}=(-1)^n$  for  $n\geq 1$  which implies that  $gcd(p_n,q_n)=1$ .

## Quantum Computation

Digression: Continued fractions

#### Continued fraction

A finite simple continued fraction is defined by a collection of positive integers  $a_0, ..., a_N$ :

$$[a_0,...,a_N] \equiv a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{... + \frac{1}{a_N}}}}$$

The  $n^{\mathrm{th}}$  convergent  $(0 \leq n \leq N)$  of this continued fraction is defined to be  $[a_0,...,a_n]$ .

- Question: What is the running time for the continued fractions algorithm for any given rational number  $\frac{p}{a} \ge 1$ ?
  - Let  $[a_0,...,a_N]=\frac{p}{q}\geq 1$  with  $L=\lceil\log p\rceil$  and let  $p_n,q_n$  be as defined in the theorem.
  - Observation:  $p_n, q_n$  are increasing with  $p_n \ge 2p_{n-2}, q_n \ge 2q_{n-2}$ .
- Theorem: Let  $a_0,...,a_N$  be a sequence of positive numbers. Then  $[a_0,...,a_n]=\frac{p_n}{p_0}$ , where  $p_n$  and  $q_n$  are real numbers defined inductively by  $p_0\equiv 0,\ q_0\equiv 1,\ p_1\equiv 1+a_0a_1,\ q_1\equiv a_1$ , and for  $2\leq n\leq N$ ,

$$p_n \equiv a_n p_{n-1} + p_{n-2}$$
  
 $q_n \equiv a_n q_{n-1} + q_{n-2}$ 

In the case when  $a_j$  are positive integers, so too are  $p_j$  and  $q_j$  and moreover  $q_np_{n-1}-p_nq_{n-1}=(-1)^n$  for  $n\geq 1$  which implies that  $gcd(p_n,q_n)=1$ .



## Quantum Computation

Digression: Continued fractions

#### Continued fraction

A finite simple continued fraction is defined by a collection of positive integers  $a_0,...,a_N$ :

$$[a_0,...,a_N] \equiv a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{... + \frac{1}{a_N}}}}$$

The  $n^{\mathrm{th}}$  convergent  $(0 \le n \le N)$  of this continued fraction is defined to be  $[a_0,...,a_n]$ .

- Question: What is the running time for the continued fractions algorithm for any given rational number  $\frac{\rho}{a} \ge 1$ ?
  - Let  $[a_0,...,a_N]=rac{p}{q}\geq 1$  with  $L=\lceil\log p\rceil$  and let  $p_n,q_n$  be as defined in the theorem.
  - Observation:  $p_n, q_n$  are increasing with  $p_n \ge 2p_{n-2}, q_n \ge 2q_{n-2}$ .
  - This implies that  $2^{\lfloor N/2 \rfloor} \le q \le p$ . So, N = O(L) and the running time of algorithm is  $O(L^3)$ .
- Theorem: Let  $a_0,...,a_N$  be a sequence of positive numbers. Then  $[a_0,...,a_n]=\frac{\rho_n}{q_n}$ , where  $\rho_n$  and  $q_n$  are real numbers defined inductively by  $\rho_0\equiv 0$ ,  $q_0\equiv 1$ ,  $p_1\equiv 1+a_0a_1$ ,  $q_1\equiv a_1$ , and for  $2\leq n\leq N$ ,  $p_n\equiv a_np_{n-1}+p_{n-2}$ ;  $q_n\equiv a_nq_{n-1}+q_{n-2}$

In the case when  $a_j$  are positive integers, so too are  $p_j$  and  $q_j$  and moreover  $q_np_{n-1}-p_nq_{n-1}=(-1)^n$  for  $n\geq 1$  which implies that  $gcd(p_n,q_n)=1$ .



### Continued fraction

A finite simple continued fraction is defined by a collection of positive integers  $a_0, ..., a_N$ :

$$[a_0,...,a_N] \equiv a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{... + \frac{1}{a_N}}}}$$

The  $n^{\text{th}}$  convergent  $(0 \le n \le N)$  of this continued fraction is defined to be  $[a_0, ..., a_n]$ .

• Theorem: Let x be a rational number and suppose  $\frac{p}{q}$  is a rational number such that  $|\frac{p}{q} - x| \leq \frac{1}{2q^2}$ . Then  $\frac{p}{q}$  is a convergent of the continued fraction for x.

### Theorem

Let x be a rational number and suppose  $\frac{p}{q}$  is a rational number such that  $|\frac{p}{q}-x|\leq \frac{1}{2q^2}$ . Then  $\frac{p}{q}$  is a convergent of the continued fraction for x.

### Proof sketch

- Let  $\frac{p}{q} = [a_0, ..., a_n]$  and let  $p_j, q_j$  as defined in the previous theorem so that  $\frac{p}{q} = \frac{p_n}{q_n}$ .
- Define  $\delta$  by the equation:

$$x \equiv \frac{p_n}{q_n} + \frac{\delta}{2q_n^2}, \text{so that } |\delta| \leq 1.$$

• Define  $\lambda$  by

$$\lambda \equiv 2 \left( \frac{q_n p_{n-1} - p_n q_{n-1}}{\delta} \right) - \frac{q_{n-1}}{q_n}$$

### Theorem

Let x be a rational number and suppose  $\frac{p}{q}$  is a rational number such that  $|\frac{p}{q}-x|\leq \frac{1}{2q^2}$ . Then  $\frac{p}{q}$  is a convergent of the continued fraction for x.

## Proof sketch

- Let  $\frac{p}{q} = [a_0, ..., a_n]$  and let  $p_j, q_j$  as defined in the previous theorem so that  $\frac{p}{q} = \frac{p_n}{q_n}$ .
- Define  $\delta$  by the equation:  $x \equiv \frac{p_n}{q_n} + \frac{\delta}{2q_n^2}$ , so that  $|\delta| \leq 1$ .
- Define  $\lambda$  by  $\lambda \equiv 2\left(\frac{q_np_{n-1}-p_nq_{n-1}}{\delta}\right)-\frac{q_{n-1}}{q_n}$
- Claim 1:  $x = \frac{\lambda p_n + p_{n-1}}{\lambda q_n + q_{n-1}}$  and therefore  $x = [a_0, ..., a_n, \lambda]$ .

### Theorem

Let x be a rational number and suppose  $\frac{p}{q}$  is a rational number such that  $|\frac{p}{q}-x|\leq \frac{1}{2q^2}$ . Then  $\frac{p}{q}$  is a convergent of the continued fraction for x.

## Proof sketch

- Let  $\frac{p}{q} = [a_0, ..., a_n]$  and let  $p_j, q_j$  as defined in the previous theorem so that  $\frac{p}{q} = \frac{p_n}{q_n}$ .
- Define  $\delta$  by the equation:  $x \equiv \frac{p_n}{q_n} + \frac{\delta}{2q_n^2}$ , so that  $|\delta| \leq 1$ .
- Define  $\lambda$  by  $\lambda \equiv 2\left(\frac{q_np_{n-1}-p_nq_{n-1}}{\delta}\right) \frac{q_{n-1}}{q_n}$
- Claim 1:  $x = \frac{\lambda p_n + p_{n-1}}{\lambda q_n + q_{n-1}}$  and therefore  $x = [a_0, ..., a_n, \lambda]$ .
- Claim 2:  $\lambda = \frac{2}{\delta} \frac{q_{n-1}}{q_n} > 2 1 > 1$  which further implies that  $\lambda = [b_0, ..., b_m]$  and  $x = [a_0, ..., a_n, b_0, ..., b_m]$ .
- This completes the proof of the theorem.



## Quantum Computation

Phase estimation  $\rightarrow$  Order-finding

### Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

$$U|y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1\\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

- Exercise summary: Let  $|u_s\rangle\equiv\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}e^{-(2\pi i)\frac{sk}{r}}\left|x^k\pmod{N}\right\rangle$  be an eigenstate of U. Then  $U|u_s\rangle=e^{(2\pi i)\frac{s}{r}}\left|u_s\rangle\right|$
- Main idea for determining r: We will use phase estimation to get an estimate on  $\frac{s}{r}$  and then obtain r from it.
  - How do we implement controlled U<sup>2<sup>j</sup></sup>? Modular exponentiation
  - How do we prepare an eigenstate  $|u_s\rangle$ ?
    - We work with  $|1\rangle$  as the first register since  $\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|u_s\rangle=|1\rangle.$
- So, we will argue that for each  $0 \le s \le r-1$ , we will obtain an estimate of  $\varphi \approx \frac{s}{r}$  accurate to 2L+1 bits with probability at least  $\frac{(1-\varepsilon)}{r}$ .
  - Question: How do we extract r from this? Continued fractions
  - Question: Are we guaranteed to get r using continued fractions?
     What could go wrong?



## Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

- We obtain  $\varphi \approx \frac{s}{r}$  for some  $0 \le s \le r 1$  and then we use continued fractions to obtain s', r' such that s'/r' = s/r.
- The problem is r' may not equal r. One such case is when s=0. This, however, is a small probability event.
- <u>Claim</u>: Suppose we repeat twice and obtain  $s'_1$ ,  $r'_1$  and  $s'_2$ ,  $r'_2$ . If  $s_1$  and  $s_2$  are co-prime, then  $r = lcm(r'_1, r'_2)$ .

## Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

- We obtain  $\varphi \approx \frac{s}{r}$  for some  $0 \le s \le r 1$  and then we use continued fractions to obtain s', r' such that s'/r' = s/r.
- The problem is r' may not equal r. One such case is when s=0. This, however, is a small probability event.
- <u>Claim</u>: Suppose we repeat twice and obtain  $r'_1$  and  $r'_2$  corresponding to  $s_1, s_2$ . If  $s_1$  and  $s_2$  are co-prime, then  $r = lcm(r'_1, r'_2)$ .
- Claim:  $Pr[s_1 \text{ and } s_2 \text{ are co-prime}] \ge 1/4$ .

## Quantum Computation

Phase estimation  $\rightarrow$  Order-finding

## Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

## Quantum Order-finding

1. 
$$|0\rangle\,|1\rangle$$
 (Initial state)

2. 
$$\rightarrow \frac{1}{2^{t/2}} \sum_{j=0}^{2^t-1} |j\rangle |1\rangle$$
 (Create superposition)

4. 
$$\rightarrow \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} \left| (\tilde{s/r}) \right\rangle |u_s\rangle$$
 (Apply inverse FT to 1<sup>st</sup> register)

5. 
$$\rightarrow (\tilde{s/r})$$
 (Measure first register)  
6.  $\rightarrow r$  (Use continued fractions algorithm)

 $\rightarrow r$  (Use continued fractions algorithm)

 What is the size of the circuit that computes the order with high probability?



## Quantum Computation

Phase estimation  $\rightarrow$  Order-finding

## Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

## Quantum Order-finding

1. 
$$|0\rangle\,|1\rangle$$
 (Initial state)

2. 
$$\rightarrow \frac{1}{2^{t/2}} \sum_{j=0}^{2^t-1} |j\rangle |1\rangle$$
 (Create superposition)

4. 
$$\rightarrow \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} \left| (\tilde{s/r}) \right\rangle |u_s\rangle$$
 (Apply inverse FT to 1<sup>st</sup> register)

5. 
$$\rightarrow (\tilde{s/r})$$
 (Measure first register)  
6.  $\rightarrow r$  (Use continued fractions algorithm)

 $\rightarrow r$  (Use continued fractions algorithm)

• What is the size of the circuit that computes the order with high probability?  $O(L^3)$ 

End