COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i \varphi}$. The goal is to estimate φ .

- We will use the assumption that there are black-boxes that:
 - prepare the state $|u\rangle$, and
 - perform the controlled- $U^{2^{j}}$ operation.
- We will describe a phase estimation procedure that uses two registers:
 - A *t*-qubit register initially in state $|0...0\rangle$ (the value of *t* to be decided later), and
 - a register that begins in the state $|u\rangle$.

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i \varphi}$. The goal is to estimate φ .

• <u>Claim 1</u>: The final state of the first register in the circuit below is given by:

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i \varphi}$. The goal is to estimate φ .

• <u>Claim 1</u>: The final state of the first register in the circuit below is given by:

$$\frac{1}{2^{t/2}}\left(\left|0\right\rangle+\mathsf{e}^{(2\pi i)2^{t-1}\varphi}\left|1\right\rangle\right)\left(\left|0\right\rangle+\mathsf{e}^{(2\pi i)2^{t-2}\varphi}\left|1\right\rangle\right)\ldots\left(\left|0\right\rangle+\mathsf{e}^{(2\pi i)2^{0}\varphi}\left|1\right\rangle\right)=\frac{1}{2^{t/2}}\sum_{k=0}^{2^{t}-1}\mathsf{e}^{(2\pi i)\varphi k}\left|k\right\rangle$$

• Question: Suppose φ may be expressed exactly as $\overline{\varphi} = [0 \cdot \varphi_1 \varphi_2 ... \varphi_t]$. Suggest a way to retrieve the value of φ ?

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i\varphi}.$ The goal is to estimate $\varphi.$

• <u>Claim 1</u>: The final state of the first register in the circuit below is given by:

$$\frac{1}{2^{t/2}}\left(\left|0\right\rangle+e^{(2\pi i)2^{t-1}\varphi}\left|1\right\rangle\right)\left(\left|0\right\rangle+e^{(2\pi i)2^{t-2}\varphi}\left|1\right\rangle\right)\ldots\\ \left(\left|0\right\rangle+e^{(2\pi i)2^{0}\varphi}\left|1\right\rangle\right)=\frac{1}{2^{t/2}}\sum_{k=0}^{2^{t-1}}e^{(2\pi i)\varphi k}\left|k\right\rangle$$

- Question: Suppose φ may be expressed exactly as $\overline{\varphi = [0 \cdot \varphi_1 \varphi_2 ... \varphi_t]}$. Suggest a way to retrieve the value of φ ?
 - Taking the inverse-fourier transform and measuring the value of the first register in the computational basis gives *φ*.
- In general, we will show that the inverse Fourier transform has the following behaviour:

$$rac{1}{2^{t/2}}\sum_{j=0}^{2^t-1}e^{(2\pi i)\varphi j}\ket{j}\ket{u}
ightarrow \ket{ ilde{arphi}}\ket{u}$$

where $|\tilde{\varphi}\rangle$ denotes a state that is a good estimator for φ when measured.

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i \varphi}$. The goal is to estimate φ .

- We will use the assumption that there are black-boxes that:
 - prepare the state $|u\rangle$, and
 - perform the controlled- $U^{2^{j}}$ operation.
- We will describe a phase estimation procedure that uses two registers:
 - A *t*-qubit register initially in state $|0...0\rangle$ (the value of *t* to be decided later), and
 - a register that begins in the state $|u\rangle$.

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i \varphi}$. The goal is to estimate φ .

• <u>Claim 1</u>: The final state of the first register in the circuit below is given by:

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i \varphi}$. The goal is to estimate φ .

• <u>Claim 1</u>: The final state of the first register in the circuit below is given by:

$$\frac{1}{2^{t/2}}\left(\left|0\right\rangle+\mathsf{e}^{(2\pi i)2^{t-1}\varphi}\left|1\right\rangle\right)\left(\left|0\right\rangle+\mathsf{e}^{(2\pi i)2^{t-2}\varphi}\left|1\right\rangle\right)\ldots\left(\left|0\right\rangle+\mathsf{e}^{(2\pi i)2^{0}\varphi}\left|1\right\rangle\right)=\frac{1}{2^{t/2}}\sum_{k=0}^{2^{t}-1}\mathsf{e}^{(2\pi i)\varphi k}\left|k\right\rangle$$

• Question: Suppose φ may be expressed exactly as $\overline{\varphi} = [0 \cdot \varphi_1 \varphi_2 ... \varphi_t]$. Suggest a way to retrieve the value of φ ?

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i\varphi}.$ The goal is to estimate $\varphi.$

• <u>Claim 1</u>: The final state of the first register in the circuit below is given by:

$$\frac{1}{2^{t/2}}\left(\left|0\right\rangle+e^{(2\pi i)2^{t-1}\varphi}\left|1\right\rangle\right)\left(\left|0\right\rangle+e^{(2\pi i)2^{t-2}\varphi}\left|1\right\rangle\right)\ldots\\ \left(\left|0\right\rangle+e^{(2\pi i)2^{0}\varphi}\left|1\right\rangle\right)=\frac{1}{2^{t/2}}\sum_{k=0}^{2^{t-1}}e^{(2\pi i)\varphi k}\left|k\right\rangle$$

- Question: Suppose φ may be expressed exactly as $\overline{\varphi = [0 \cdot \varphi_1 \varphi_2 ... \varphi_t]}$. Suggest a way to retrieve the value of φ ?
 - Taking the inverse-fourier transform and measuring the value of the first register in the computational basis gives *φ*.
- In general, we will show that the inverse Fourier transform has the following behaviour:

$$rac{1}{2^{t/2}}\sum_{j=0}^{2^t-1}e^{(2\pi i)\varphi j}\ket{j}\ket{u}
ightarrow \ket{ ilde{arphi}}\ket{u}$$

where $|\tilde{\varphi}\rangle$ denotes a state that is a good estimator for φ when measured.

• In general, we will show that the inverse Fourier transform has the following behaviour:

$$rac{1}{2^{t/2}}\sum_{j=0}^{2^t-1}e^{(2\pi i)arphi j}\ket{j}\ket{u}
ightarrow \ket{ ilde{arphi}}\ket{u}$$

where $|\tilde{\varphi}\rangle$ denotes a state that is a good estimator for φ when measured.

Claim 2

It is sufficient to run the phase estimation technique with $t = n + \log \left(2 + \frac{1}{2\varepsilon}\right)$ in order to obtain φ accurate to *n* bits with probability at least $(1 - \varepsilon)$.

Claim 2

It is sufficient to run the phase estimation technique with $t = n + \lceil \log \left(2 + \frac{1}{2\varepsilon}\right) \rceil$ in order to obtain φ accurate to *n* bits with probability at least $(1 - \varepsilon)$.

Proof sketch

- Let 0 ≤ b ≤ 2^t − 1 be an integer such that ^b/_{2^t} = [0 ⋅ b₁...b_t] is the best t bit approximation to φ that is less than φ. Let δ = φ − ^b/_{2^t} (which implies 0 ≤ δ ≤ 2^{-t}).
- <u>Claim 2.1</u>: Applying the inverse Fourier transform on the first register in state $\frac{1}{2^{t/2}} \sum_{k=0}^{2^t-1} e^{(2\pi i)\varphi k} |k\rangle$ ends in the following state:

$$\frac{1}{2^t} \sum_{k,l=0}^{2^t-1} e^{\frac{-(2\pi i)kl}{2^t}} e^{(2\pi i)\varphi k} \ket{l}.$$

Claim 2

It is sufficient to run the phase estimation technique with $t = n + \lceil \log \left(2 + \frac{1}{2\varepsilon}\right) \rceil$ in order to obtain φ accurate to *n* bits with probability at least $(1 - \varepsilon)$.

Proof sketch

- Let $0 \le b \le 2^t 1$ be an integer such that $\frac{b}{2^t} = [0 \cdot b_1 \dots b_t]$ is the best t bit approximation to φ that is less than φ . Let $\delta = \varphi \frac{b}{2^t}$ (which implies $0 \le \delta \le 2^{-t}$).
- <u>Claim 2.1</u>: Applying the inverse Fourier transform on the first register in state $\frac{1}{2^{t/2}} \sum_{k=0}^{2^t-1} e^{(2\pi i)\varphi k} |k\rangle$ ends in the following state: $\frac{1}{2^t} \sum_{k,l=0}^{2^t-1} e^{\frac{-(2\pi i)kl}{2^t}} e^{(2\pi i)\varphi k} |l\rangle$.
- Claim 2.2: Let α_l be the amplitude of $|(b+l) \mod 2^t\rangle$. Then $\alpha_l = \frac{1}{2^t} \left(\frac{1-e^{(2\pi i)(2^t\varphi - (b+l))}}{1-e^{(2\pi i)(\varphi - (b+l)/2^t)}} \right) = \frac{1}{2^t} \left(\frac{1-e^{(2\pi i)(2^t\delta - l)}}{1-e^{(2\pi i)(\delta - l/2^t)}} \right).$

Claim 2

It is sufficient to run the phase estimation technique with $t = n + \lceil \log \left(2 + \frac{1}{2\varepsilon}\right) \rceil$ in order to obtain φ accurate to *n* bits with probability at least $(1 - \varepsilon)$.

Proof sketch

- Let 0 ≤ b ≤ 2^t − 1 be an integer such that ^b/_{2^t} = [0 ⋅ b₁...b_t] is the best t bit approximation to φ that is less than φ. Let δ = φ − ^b/_{2^t} (which implies 0 ≤ δ ≤ 2^{-t}).
- <u>Claim 2.1</u>: Applying the inverse Fourier transform on the first register in state $\frac{1}{2^{t}}\sum_{k=0}^{2^{t}-1} e^{(2\pi i)\varphi k} |k\rangle$ ends in the following state: $\frac{1}{2^{t}}\sum_{k,l=0}^{2^{t}-1} e^{-\frac{(2\pi i)k}{2^{t}}} e^{(2\pi i)\varphi k} |l\rangle$.
- <u>Claim 2.2</u>: Let α_l be the amplitude of $|(b+l) \mod 2^t\rangle$. Then $\alpha_l = \frac{1}{2^t} \left(\frac{1 e^{(2\pi i)(2^t \varphi (b+l))}}{1 e^{(2\pi i)(\varphi (b+l)/2^t)}} \right) = \frac{1}{2^t} \left(\frac{1 e^{(2\pi i)(2^t A l)}}{1 e^{(2\pi i)(\delta l/2^t)}} \right).$
- <u>Claim 2.3</u>: Let *e* be the error parameter and let *m* be the outcome of the measurement. Then

$$\Pr[|m-b| > e] \le \frac{1}{2(e-1)}.$$

Claim 2

It is sufficient to run the phase estimation technique with $t = n + \lceil \log \left(2 + \frac{1}{2\varepsilon}\right) \rceil$ in order to obtain φ accurate to n bits with probability at least $(1 - \varepsilon)$.

Proof sketch

- Let 0 ≤ b ≤ 2^t − 1 be an integer such that ^b/_{2^t} = [0 ⋅ b₁...b_t] is the best t bit approximation to φ that is less than φ. Let δ = φ − ^b/_{2^t} (which implies 0 ≤ δ ≤ 2^{-t}).
- <u>Claim 2.1</u>: Applying the inverse Fourier transform on the first register in state $\frac{1}{2^{t/2}} \sum_{k=0}^{2^{t}-1} e^{(2\pi i)\varphi k} |k\rangle$ ends in the following state: $\frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1} e^{\frac{(2\pi i)k}{2^{t}}} e^{(2\pi i)\varphi k} |I\rangle$.
- <u>Claim 2.2</u>: Let α_l be the amplitude of $|(b+l) \mod 2^t \rangle$. Then $\alpha_l = \frac{1}{2^t} \left(\frac{1 e^{(2\pi i)(2^t \varphi (b+l))}}{1 e^{(2\pi i)(\varphi (b+l)/2^t)}} \right) = \frac{1}{2^t} \left(\frac{1 e^{(2\pi i)(2^t \delta l)}}{1 e^{(2\pi i)(\delta l/2^t)}} \right).$
- <u>Claim 2.3</u>: Let *e* be the error parameter and let *m* be the outcome of the measurement. Then

$$\Pr[|m-b| > e] \le \frac{1}{2(e-1)}.$$

• The claim follows by setting t = n + p and $\varepsilon = \frac{1}{2(2^p-1)}$.

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i \varphi}$. The goal is to estimate φ .

- The phase estimation protocol works when the second register is set to the eigenstate |u>. In general, this may not be feasible.
- <u>Observation</u>: Any general state $|\psi\rangle$ may be written in terms of the eigenstates of U as $\sum_{u} c_{u} |u\rangle$.
- Exercise: The phase estimation procedure takes state $(|0\rangle)(\sum_{u} c_{u} |u\rangle)$ to $\sum_{u} c_{u} |\tilde{\varphi}_{u}\rangle |u\rangle$. If $t = n + \lceil \log (2 + \frac{1}{2\varepsilon}) \rceil$, then the probability of measuring φ_{u} accurate to *n* bits at the end of the phase estimation procedure is at least $|c_{u}|^{2}(1 \varepsilon)$.

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i \varphi}$. The goal is to estimate φ .

• Phase estimation enables us to design quantum algorithms for the order-finding and factoring problems.

Quantum Computation: Order finding

- Given integers N > x > 0 such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^r = 1 \pmod{N}$.
- Exercise: What is the order of 5 modulo 21?

- Given integers N > x > 0 such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^r = 1 \pmod{N}$.
- Exercise: What is the order of 5 modulo 21? 6

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

• <u>Exercise</u>: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N?

- Given integers N > x > 0 such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^r = 1 \pmod{N}$.
- Exercise: What is the order of 5 modulo 21? 6

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

- <u>Exercise</u>: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N? Yes
- Exercise: Is it an efficient algorithm?

$\begin{array}{l} Quantum \ Computation \\ \mbox{Phase estimation} \rightarrow \mbox{Order-finding} \end{array}$

- Given integers N > x > 0 such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^r = 1 \pmod{N}$.
- Exercise: What is the order of 5 modulo 21? 6

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

- <u>Exercise</u>: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N? Yes
- Exercise: Is it an efficient algorithm?
- Let L = ⌈log n⌉. The number of bits needed to specify the problem is O(L). So, an efficient algorithm should have running time that is polynomial in L.

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

• Consider the operator U that has the following behaviour:

$$U |y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1 \\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

• Exercise: Show that U is unitary.

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

• Consider the operator U that has the following behaviour:

$$U |y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1 \\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

• Exercise: Show that U is unitary.

• Exercise: Show that the states defined by

$$|u_{s}\rangle \equiv \frac{1}{\sqrt{r}}\sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} \left| x^{k} \pmod{N} \right\rangle$$

are the eigenstates of U. Find the corresponding eigenvalues.

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

• Consider the operator U that has the following behaviour:

$$U |y\rangle \equiv \begin{cases} |xy \pmod{N}\rangle & \text{if } 0 \le y \le N-1 \\ |y\rangle & \text{if } N \le y \le 2^L - 1 \end{cases}$$

• Exercise summary: Let $|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2\pi i)\frac{sk}{r}} |x^k \pmod{N}\rangle$ be an eigenstate of U. Then $U |u_s\rangle = e^{(2\pi i)\frac{s}{r}} |u_s\rangle$

End

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information