COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Basic Quantum Algorithms

Quantum Computation

- We will see some basic quantum algorithms that were the precursor to the more popular algorithms such as Factoring. The main ideas were developed in these simple algorithms.
- Bernstein-Vazirani
- Simon's problem
- While discussing these algorithms we will try to argue why quantum algorithms have an advantage compared to classical ones.

Quantum Computation

Basic quantum algorithms: Bernstein-Vazirani

Problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that for every $x \in\{0,1\}^{n}$, $f(x)=(a \cdot x)$, determine a. Here $(a \cdot x)$ denotes the dot product of bit vectors a and x.

- Question: In the classical setting, how many classical queries to the function f will be needed to determine a ?

Quantum Computation

Problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that for every $x \in\{0,1\}^{n}$, $f(x)=(a \cdot x)$, determine a. Here $(a \cdot x)$ denotes the dot product of bit vectors a and x.

- Question: In the classical setting, how many classical queries to the function f will be needed to determine a ? n queries
- Since each query reveals at most one bit of a.
- Question: Suppose the unitary transformation below is available to us (as in Deutsch-Jozsa). How many invocations of this gate will be required within the quantum circuit to determine a ?

Quantum Computation

Problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that for every $x \in\{0,1\}^{n}$, $f(x)=(a \cdot x)$, determine a. Here $(a \cdot x)$ denotes the dot product of bit vectors a and x.

- Question: In the classical setting, how many classical queries to the function f will be needed to determine a ? n queries
- Since each query reveals at most one bit of a.
- Question: Suppose the unitary transformation below is available to us (as in Deutsch-Jozsa). How many invocations of this gate will be required within the quantum circuit to determine a? One!

Quantum Computation

Basic quantum algorithms: Bernstein-Vazirani

Problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that for every $x \in\{0,1\}^{n}$, $f(x)=(a \cdot x)$, determine a. Here $(a \cdot x)$ denotes the dot product of bit vectors a and x.

- Question: In the classical setting, how many classical queries to the function f will be needed to determine a ? n queries
- Question: Suppose the unitary transformation below is available to us (as in Deutsch-Jozsa). How many invocations of this gate will be required within the quantum circuit to determine a ? One!
- The same circuit as in Deutsch-Jozsa works!
- Question: What will be the measurement output of the circuit below?

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation

Problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that for every $x \in\{0,1\}^{n}$, $f(x)=(a \cdot x)$, determine a. Here $(a \cdot x)$ denotes the dot product of bit vectors a and x.

- Question: In the classical setting, how many classical queries to the function f will be needed to determine a ? n queries
- Question: Suppose the unitary transformation below is available to us (as in Deutsch-Jozsa). How many invocations of this gate will be required within the quantum circuit to determine a? One!
- Does this really show that quantum computers are more powerful?
- The function f is only accessible as a black-box in the classical setting.
- There may be a classical algorithm that figures out a if the circuit implementing f is accessible.

Quantum Computation

Problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that for every $x \in\{0,1\}^{n}$, $f(x)=(a \cdot x)$, determine a. Here $(a \cdot x)$ denotes the dot product of bit vectors a and x.

- Question: In the classical setting, how many classical queries to the function f will be needed to determine a ? n queries
- Question: Suppose the unitary transformation below is available to us (as in Deutsch-Jozsa). How many invocations of this gate will be required within the quantum circuit to determine a ? One!
- Does this really show that quantum computers are more powerful? Yes and no
- The above shows a gap factor of n. Can we design a similar problem that has super-polynomial gap? Yes using a recursive extension of the above ideas.

Quantum Computation

Basic quantum algorithms: Simon's problem

Simon's problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ that satisfies the following conditions: (i) $f(x)=f(y) \leftrightarrow x \oplus y=a$, (ii) $a \neq 0 \ldots 0$. The problem is to determine a.

- Such a function is called a 2-to-1 function.
- Question: How many classical queries to the function f need to be made to find a ?

Quantum Computation

Basic quantum algorithms: Simon's problem

Simon's problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ that satisfies the following conditions: (i) $f(x)=f(y) \leftrightarrow x \oplus y=a$, (ii) $a \neq 0 \ldots 0$. The problem is to determine a.

- Question: How many classical queries to the function f need to be made to find a ? $\Theta\left(2^{n / 2}\right)$
- $O\left(2^{n / 2}\right)$ queries are suffcient using birthday bound.
- $\Omega\left(2^{n / 2}\right)$ queries are necessary using an information-theoretic argument.

Quantum Computation

Basic quantum algorithms: Simon's problem

Simon's problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ that satisfies the following conditions: (i) $f(x)=f(y) \leftrightarrow x \oplus y=a$, (ii) $a \neq 0 \ldots 0$. The problem is to determine a.

- Question: How many classical queries to the function f need to be made to find a ? $\Theta\left(2^{n / 2}\right)$
- Question: Suppose the following gate is available. How many invocations of this gate will be required in the quantum setting to obtain a?

Quantum Computation

Basic quantum algorithms: Simon's problem

Simon's problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ that satisfies the following conditions: (i) $f(x)=f(y) \leftrightarrow x \oplus y=a$, (ii) $a \neq 0 \ldots 0$. The problem is to determine a.

- Question: How many classical queries to the function f need to be made to find a ? $\Theta\left(2^{n / 2}\right)$
- Question: Suppose the following gate is available. How many invocations of this gate will be required in the quantum setting to obtain a ? $\Theta(n)$
- Running the circuit below $\Theta(n)$ times will be sufficient to determine a.

Quantum Computation

Basic quantum algorithms: Simon's problem

Simon's problem

Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ that satisfies the following conditions: (i) $f(x)=f(y) \leftrightarrow x \oplus y=a$, (ii) $a \neq 0 \ldots 0$. The problem is to determine a.

- Question: How many classical queries to the function f need to be made to find a ? $\Theta\left(2^{n / 2}\right)$
- Question: Suppose the following gate is available. How many invocations of this gate will be required in the quantum setting to obtain a ? $\Theta(n)$
- Does this really show that quantum computers are more powerful? Yes and no

End

