COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Complexity class BQP

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be 1/4).
- Exercise: Argue that $P \subseteq BPP$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most 1/4. Also, the circuits should be uniformly generated.

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be 1/4).
- Exercise: Argue that $P \subseteq BPP$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most 1/4. Also, the circuits should be uniformly generated.

• Exercise: Argue that $P \subseteq BPP \subseteq BQP$.

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be 1/4).
- Exercise: Argue that $P \subseteq BPP$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most 1/4. Also, the circuits should be uniformly generated.

- Exercise: Argue that $P \subseteq BPP \subseteq BQP$.
- Complexity class PSPACE: A language is in PSPACE if there is a polynomial space Turing Machine (algorithm) that decides the language.

- <u>Complexity class BPP</u>: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be 1/4).
- <u>Exercise</u>: Argue that $P \subseteq BPP$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most 1/4. Also, the circuits should be uniformly generated.

- Exercise: Argue that $P \subseteq BPP \subseteq BQP$.
- Complexity class PSPACE: A language is in PSPACE if there is a polynomial space Turing Machine (algorithm) that decides the language.

Theorem

 $BQP \subseteq PSPACE.$

Quantum Computation

Theorem

 $BQP \subseteq PSPACE.$

Proof sketch

- For any language *L*, consider the quantum computer that decides *L*.
- Let the quantum circuit corresponding to inputs of length n contain p(n) gates for some polynomial p.
- Suppose the quantum circuit starts in state $|0\rangle$ and uses a sequence of gates $U_1, ..., U_{p(n)}$.
- Question: Can we find the probability of this circuit ending in state $|y\rangle$ on final measurement in polynomial space?

Quantum Computation

Theorem

 $BQP \subseteq PSPACE.$

Proof sketch

- For any language *L*, consider the quantum computer that decides *L*.
- Let the quantum circuit corresponding to inputs of length *n* contain *p*(*n*) gates for some polynomial *p*.
- Suppose the quantum circuit starts in state |0⟩ and uses a sequence of gates U₁,..., U_{p(n)}.
 Question: Can we find the probability of this circuit ending in
- Question: Can we find the probability of this circuit ending in state $|y\rangle$ on final measurement in polynomial space? Yes
 - ${\scriptstyle \bullet }$ The probability of measuring state $\left| y \right\rangle$ is modulus squared of:

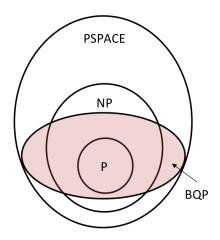
$$\langle y | U_{p(n)} \dots U_1 | 0 \rangle$$
.

We note that

$$\left\langle y\right| \left. U_{\rho(n)} ... U_1 \left| 0 \right\rangle = \sum_{x_1, ..., x_{\rho(n)-1}} \left\langle y\right| \left. U_{\rho(n)} \left| x_{\rho(n)-1} \right\rangle \left\langle x_{\rho(n)-1} \right| \left. U_{\rho(n)-2} ... U_2 \left| x_1 \right\rangle \left\langle x_1 \right| \left. U_1 \left| 0 \right\rangle \right. \right\rangle$$

• Claim: The above sum can be computed in polynomial space.

• Complexity picture:



End

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information