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Quantum Computation: Quantum circuits
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Quantum Circuit
Universal quantum gates

A set of gates is said to be universal for quantum computation if
any unitary operation may be approximated to arbitrary
accuracy by a quantum circuit involving only those gates.

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, CNOT, and π/8 gates.
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Quantum Circuit
Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, CNOT, and π/8 gates.

Proof sketch

Claim 1: A single qubit operation may be approximated to
arbitrary accuracy using the Hadamard, and π/8 gates.
Claim 2: An arbitrary unitary operator may be expressed exactly
using single qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed exactly
as a product of unitary operators that each acts non-trivially only
on a subspace spanned by two computational basis states (such
gates are called two-level gates).
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using using single qubit and CNOT gates.

What about efficiency?

Upper-bound: Any unitary can be approximated using
exponentially many gates.
Lower-bound: There exists a unitary operation that which require
exponentially many gates to approximate.
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Quantum Circuit
Universal quantum gates

Claim 2.1

An arbitrary unitary operator may be expressed exactly as a product
of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states.

Proof sketch

The main idea can be understood using a 3× 3 unitary matrix:

U =

a d g
b e h
c f j

 .
We will find two-level unitary matrices U1,U2,U3 such that

U3U2U1U = I and U = U†1U
†
2U
†
3
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Quantum Circuit
Universal quantum gates

Claim 2.1

An arbitrary unitary operator may be expressed exactly as a product
of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states.

Proof sketch

The main idea can be understood using a 3× 3 unitary matrix:

U =

a d g
b e h
c f j

 .
We will find two-level unitary matrices U1,U2,U3 such that

U3U2U1U = I and U = U†1U
†
2U
†
3

Exercise

Show that any d × d unitary matrix can be written in terms of
d(d − 1)/2 two-level matrices.
There exists a d × d unitary matrix U which cannot be
decomposed as a product of fewer than d − 1 two-level unitary
matrices.
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Quantum Circuit
Universal quantum gates

Claim 2

An arbitrary unitary operator may be expressed exactly using single
qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed
exactly as a product of unitary operators that each acts
non-trivially only on a subspace spanned by two computational
basis states.
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using using single qubit and CNOT gates.

Proof sketch

Let U be a two-level unitary matrix on a n-qubit quantum
computer.
Let U act non-trivially on the space spanned by the
computational basis states |s〉 and |t〉, where s = s1, ..., sn and
t = t1, ..., tn are n-bit binary strings.
Let Ũ be the non-trivial 2× 2 submatrix of U. Note that we can
think Ũ to be a unitary operator on a single qubit.
We will use the gray-code connecting s and t which is a sequence
of n-bit strings staring with s and ending with t such that the
subsequent strings in the sequence differ only on one bit.
Example: s = 101001, t = 110011.

g1 = 101001; g2 = 101011; g3 = 100011; g4 = 110011

Main idea:

We will design a sequence of swaps
|g1〉 → |gm−1〉 , |g2〉 → |g1〉 , |g3〉 → |g2〉 , ..., |gm−1〉 → |gm−2〉.
We will apply Ũ to the qubit that differs in gm−1 and gm.
Swap |gm−1〉 with |gm−2〉, |gm−2〉 with |gm−3〉 and so on.
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Quantum Circuit
Universal quantum gates

Claim 2.2

An arbitrary two-level unitary operator may be expressed exactly using
using single qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =



a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
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Quantum Circuit
Universal quantum gates

Claim 2.2

An arbitrary two-level unitary operator may be expressed exactly using
using single qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =



a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
Construction:
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Quantum Circuit
Universal quantum gates

Claim 2.2

An arbitrary two-level unitary operator may be expressed exactly using
using single qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =


a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
Construction:

Exercise

For an arbitrary unitary operator on an n-qubit system, how many
CNOT and single qubit gate willl be required in the entire
construction?
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Quantum Circuit
Universal quantum gates

Claim 2

An arbitrary unitary operator may be expressed exactly using single
qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =


a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
Construction:

Exercise

For an arbitrary unitary operator on an n-qubit system, how many
CNOT and single qubit gate willl be required in the entire
construction? O(n24n) gates.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information



Quantum Circuit
Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, CNOT, and π/8 gates.

Proof sketch

Claim 1: A single qubit operation may be approximated to
arbitrary accuracy using the Hadamard, and π/8 gates.
Claim 2: An arbitrary unitary operator may be expressed exactly
using single qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed exactly
as a product of unitary operators that each acts non-trivially only
on a subspace spanned by two computational basis states (such
gates are called two-level gates).
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using using single qubit and CNOT gates.

A discrete set of gates cannot be used to implement an arbitrary
unitary operation.
However, it may be possible to approximate any unitary gate
using a discrete set of gates.
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, and π/8 gates.

We first need to define a notion of approximating a unitary
operation.
Let U and V be unitary operators on the same state space.

U denotes the target unitary operator that we would like to
implement.
V is the operator that is actually implemented.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Question: Why is the above a reasonable notion of error when
implementing V instead of U?
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, and π/8 gates.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Claim 1.1

Suppose we wish to implement a quantum circuit with m gates
U1, ...,Um. However, we can only implement V1, ...,Vm. The
difference in probabilities of a measurement outcome will be at most a
tolerance ∆ > 0 given that ∀j ,E (Uj ,Vj) ≤ ∆

2m .
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, and π/8 gates.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Claim 1.1

Suppose we wish to implement a quantum circuit with m gates
U1, ...,Um. However, we can only implement V1, ...,Vm. The
difference in probabilities of a measurement outcome will be at most a
tolerance ∆ > 0 given that ∀j ,E (Uj ,Vj) ≤ ∆

2m .

Proof sketch

Claim 1.1.1: For any POVM element M let PU and PV denote
the probabilities for measuring this element when U and V are
used respectively. Then |PU − PV | ≤ 2 · E (U,V ).
Claim 1.1.2: E (UmUm−1...U1,VmVm−1...V1) ≤

∑m
j=1 E (Uj ,Vj).
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Quantum Circuit
Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, CNOT, and π/8 gates.

Proof sketch

Claim 1: A single qubit operation may be approximated to
arbitrary accuracy using the Hadamard, phase, and π/8 gates.
Claim 2: An arbitrary unitary operator may be expressed exactly
using single qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed exactly
as a product of unitary operators that each acts non-trivially only
on a subspace spanned by two computational basis states (such
gates are called two-level gates).
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using using single qubit and CNOT gates.

A discrete set of gates cannot be used to implement an arbitrary
unitary operation.
However, it may be possible to approximate any unitary gate
using a discrete set of gates.
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

We first need to define a notion of approximating a unitary
operation.
Let U and V be unitary operators on the same state space.

U denotes the target unitary operator that we would like to
implement.
V is the operator that is actually implemented.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Question: Why is the above a reasonable notion of error when
implementing V instead of U?
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Claim 1.1

Suppose we wish to implement a quantum circuit with m gates
U1, ...,Um. However, we can only implement V1, ...,Vm. The
difference in probabilities of a measurement outcome will be at most a
tolerance ∆ > 0 given that ∀j ,E (Uj ,Vj) ≤ ∆

2m .
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Claim 1.1

Suppose we wish to implement a quantum circuit with m gates
U1, ...,Um. However, we can only implement V1, ...,Vm. The
difference in probabilities of a measurement outcome will be at most a
tolerance ∆ > 0 given that ∀j ,E (Uj ,Vj) ≤ ∆

2m .

Proof sketch

Claim 1.1.1: For any POVM element M let PU and PV denote
the probabilities for measuring this element when U and V are
used respectively. Then |PU − PV | ≤ 2 · E (U,V ).
Claim 1.1.2: E (UmUm−1...U1,VmVm−1...V1) ≤

∑m
j=1 E (Uj ,Vj).
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