COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Quantum circuits

Quantum Circuit Controlled operations

Theoerm

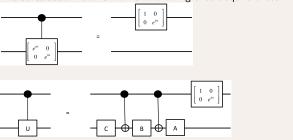
Suppose U is a unitary gate on a single qubit. Then there exist unitary operators A, B, C on a single qubit such that ABC = I and $U = e^{i\alpha}AXBXC$, where α is some overall phase factor.

Question

For a single qubit U, can we implement Controlled-U gate using only CNOT and single-qubit gates? Yes

Construction sketch

The construction follows from the following circuit equivalences.



Question

For a single qubit U, can we implement Controlled-U gate using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two control qubits using only CNOT and single-qubit gates?

Question

For a single qubit U, can we implement Controlled-U gate using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two control qubits using only CNOT and single-qubit gates? Yes

Construction sketch

The construction follows from the following circuit equivalence.



ଚର୍ଚ

Question

For a single qubit U, can we implement Controlled-U gate using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two control qubits using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with n control qubits using only CNOT and single-qubit gates?

Quantum Circuit Controlled operations

Question

For a single qubit U, can we implement Controlled- U gate using only CNOT and single-qubit gates? Yes

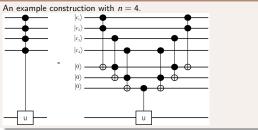
Question

For a single qubit U, can we implement Controlled-U gate with two control qubits using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with n control qubits using only CNOT and single-qubit gates? Yes using ancilla qubits

Construction sketch



• A few other gates and circuit identities:

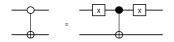
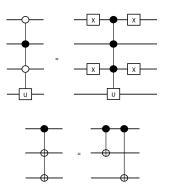
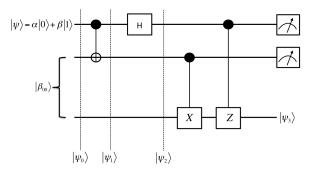


Figure: NOT gate applied to the target qubit conditional on the control qubit being 0.



Principle of deferred measurements

Measurements can always be moved from an intermediate stage of a quantum circuit to the end of the circuit; if the measurement results are used at any stage of the circuit, then the clasically controlled operations can be replaced by conditional quantum operations.



Principle of deferred measurements

Measurements can always be moved from an intermediate stage of a quantum circuit to the end of the circuit; if the measurement results are used at any stage of the circuit, then the clasically controlled operations can be replaced by conditional quantum operations.

Principle of implicit measurement

Without loss of generality, any unterminated quantum wires (qubits which are not measured) at the end of a quantum circuit may be assumed to be measured.

Quantum Circuit Universal quantum gates

• A set of gates is said to be universal for quantum computation if any unitary operation may be **approximated** to arbitrary accuracy by a quantum circuit involving only those gates.

Claim

Any unitary operation can be approximated to arbitrary accuracy using Hadamard, CNDT, and $\pi/8$ gates.

Quantum Circuit Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using Hadamard, CNOT, and $\pi/8$ gates.

Proof sketch

- <u>Claim 1</u>: A single qubit operation may be **approximated** to arbitrary accuracy using the Hadamard, and $\pi/8$ gates.
- <u>Claim 2</u>: An arbitrary unitary operator may be expressed **exactly** using single qubit and CNOT gates.
 - <u>Claim 2.1</u>: An arbitrary unitary operator may be expressed **exactly** as a product of unitary operators that each acts non-trivially only on a subspace spanned by two computational basis states (such gates are called two-level gates).
 - Claim 2.2: An arbitrary two-level unitary operator may be expressed exactly using using single qubit and CNOT gates.
- What about efficiency?
 - Upper-bound: Any unitary can be approximated using exponentially many gates.
 - Lower-bound: There exists a unitary operation that which require exponentially many gates to approximate.

Claim 2.1

An arbitrary unitary operator may be expressed **exactly** as a product of unitary operators that each acts non-trivially only on a subspace spanned by two computational basis states.

Proof sketch

• The main idea can be understood using a 3×3 unitary matrix:

$$U = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & j \end{bmatrix}$$

• We will find two-level unitary matrices U_1, U_2, U_3 such that

$$U_3U_2U_1U = I$$
 and $U = U_1^{\dagger}U_2^{\dagger}U_3^{\dagger}$

Quantum Circuit Universal quantum gates

Claim 2.1

An arbitrary unitary operator may be expressed **exactly** as a product of unitary operators that each acts non-trivially only on a subspace spanned by two computational basis states.

Proof sketch

 \bullet The main idea can be understood using a 3×3 unitary matrix:

$$U = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & j \end{bmatrix}$$

• We will find two-level unitary matrices U_1, U_2, U_3 such that

$$U_3 U_2 U_1 U = I$$
 and $U = U_1^{\dagger} U_2^{\dagger} U_3^{\dagger}$

• Exercise

- Show that any $d \times d$ unitary matrix can be written in terms of d(d-1)/2 two-level matrices.
- There exists a $d \times d$ unitary matrix U which cannot be decomposed as a product of fewer than d-1 two-level unitary matrices.

End

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information