COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

 <u>Claim</u>: (Projective measurement + unitary operators) = generalised measurement.

Proof sketch

- Let Q be the state space of the quantum system in which we would like to make a generalised measurement using measurement operators M_m.
- We introduce an ancilla system with state space M with orthonormal basis |m>.
- ullet Let U be an operator defined as

$$U\left|\psi\right\rangle\left|0\right\rangle \equiv \sum_{m} M_{m}\left|\psi\right\rangle\left|m\right\rangle$$

where $|0\rangle$ is an arbitrary state of M.

- \bullet Claim 1: U preserves inner products between states of the form $|\psi\rangle\,|0\rangle.$
- Claim 2: U can be extended to a unitary operator on $Q \otimes M$ (let us denote this by U itself).
- Claim 3: Let $P_m = I_Q \otimes |m\rangle \langle m|$. Projective measurement using P_m on $Q \otimes M$ is similar to generalised measurement using M_m on Q.

Quantum Computation: Quantum circuits

Single qubit operations

 \bullet Single qubit gates are 2 \times 2 unitary matrices. Some of the important gates are:

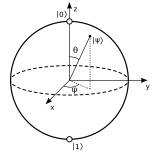
• Pauli matrices: $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

• Hadamard gate: $H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

• Phase gate: $S \equiv \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$.

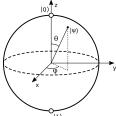
• $\pi/8$ gate: $T \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$

- Simplification: A qubit $\alpha |0\rangle + \beta |1\rangle$ may be represented as $\cos \frac{\theta}{2} |0\rangle + e^{i\psi} \sin \frac{\theta}{2} |1\rangle$. So, any tuple (θ, ψ) represents a qubit.
- This has a nice visualisation in terms of Bloch sphere.



Single qubit operations

- \bullet Single qubit gates are 2×2 unitary matrices. Some of the important gates are:
 - Pauli matrices: $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - Hadamard gate: $H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
 - Phase gate: $S \equiv \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$.
 - $\pi/8$ gate: $T \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
- Simplification: A qubit $\alpha |0\rangle + \beta |1\rangle$ may be represented as $\cos \frac{\theta}{2} |0\rangle + e^{i\psi} \sin \frac{\theta}{2} |1\rangle$. So, any tuple (θ, ψ) represents a qubit.
- This has a nice visualisation in terms of Bloch sphere.



• The vector $(\cos \psi \sin \theta, \sin \psi \sin \theta, \cos \theta)$ is called the Bloch vector.

- Single qubit gates are 2 × 2 unitary matrices. Some of the important gates are:
 - Pauli matrices: $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - Hadamard gate: $H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
 - Phase gate: $S \equiv \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$.
 - $\pi/8$ gate: $T \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
- Pauli matrices give rise to three useful classes of unitary matrices when they are exponentiated, the rotational operators about the \hat{x}, \hat{y} , and \hat{z} axis.

$$R_{X}(\theta) \equiv e^{-i\theta X/2} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}X = \begin{bmatrix} \cos\frac{\theta}{2} - i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} \cos\frac{\theta}{2} \end{bmatrix}$$

$$R_{Y}(\theta) \equiv e^{-i\theta Y/2} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Y = \begin{bmatrix} \cos\frac{\theta}{2} - \sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} \cos\frac{\theta}{2} \end{bmatrix}$$

$$R_{Z}(\theta) \equiv e^{-i\theta Z/2} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Z = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$

Single qubit operations

- Single qubit gates are 2×2 unitary matrices. Some of the important gates are:
 - Pauli matrices: $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - Hadamard gate: $H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
 - Phase gate: $S \equiv \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$.
 - $\pi/8$ gate: $T \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
- A few useful results:
 - Let $\hat{n} = (n_x, n_y, n_z)$ be a real unit vector. The rotation by θ about the \hat{n} axis is given by

$$R_{\hat{n}}(\theta) \equiv e^{-i\frac{\theta}{2}(\hat{n}\cdot\vec{\sigma})} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}(n_xX + n_yY + n_zZ),$$

where $\vec{\sigma}$ denotes the vector (X, Y, Z).

• Theorem: Suppose U is a unitary operator on a single qubit. Then there exist real numbers α, β, γ , and δ such that $U = e^{i\alpha}R_z(\beta)R_v(\gamma)R_z(\delta)$.

Quantum Circuit Single qubit operations

Theorem

Suppose U is a unitary operator on a single qubit. Then there exist real numbers α, β, γ , and δ such that $U = e^{i\alpha}R_z(\beta)R_y(\gamma)R_z(\delta)$.

Proof sketch

There are real numbers $\alpha, \beta, \gamma, \delta$ such that:

$$U = \begin{bmatrix} e^{i(\alpha - \beta/2 - \delta/2)} \cos \frac{\gamma}{2} & -e^{i(\alpha - \beta/2 + \delta/2)} \sin \frac{\gamma}{2} \\ e^{i(\alpha + \beta/2 - \delta/2)} \sin \frac{\gamma}{2} & e^{i(\alpha + \beta/2 + \delta/2)} \cos \frac{\gamma}{2} \end{bmatrix}$$

Now one just needs to verify that the RHS matches $e^{i\alpha}R_z(\beta)R_y(\gamma)R_z(\delta)$.

Quantum Circuit Single qubit operations

Theorem

Suppose U is a unitary operator on a single qubit. Then there exist real numbers α, β, γ , and δ such that $U = e^{i\alpha}R_z(\beta)R_y(\gamma)R_z(\delta)$.

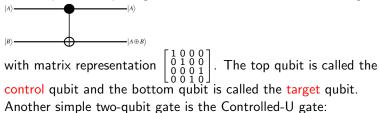
Theoerm

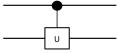
Suppose U is a unitary gate on a single qubit. Then there exist unitary operators A,B,C on a single qubit such that ABC=I and $U=e^{i\alpha}AXBXC$, where α is some overall phase factor.

Quantum Circuit Single qubit operations

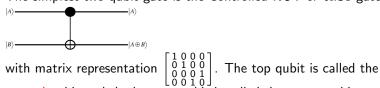
- Single qubit gates are 2 × 2 unitary matrices. Some of the important gates are:
 - Pauli matrices: $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - Hadamard gate: $H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
 - Phase gate: $S \equiv \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$.
 - $\pi/8$ gate: $T \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
- Summary:
 - The above matrices are fundamental entities that define general classes of single-qubit unitary gates such that any single-qubit unitary gate can be represented in terms of these gates.

• The simplest two-qubit gate is the Controlled-NOT or CNOT gate:



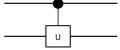


The simplest two-qubit gate is the Controlled-NOT or CNOT gate:



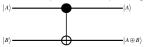
control qubit and the bottom qubit is called the target qubit.

Another simple two-qubit gate is the Controlled-U gate:



- Some exercises:
 - Build a CNOT gate from one Controlled-Z gate and two Hadamard gates.

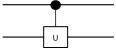
The simplest two-qubit gate is the Controlled-NOT or CNOT gate:



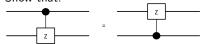
with matrix representation $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. The top qubit is called the

control qubit and the bottom qubit is called the target qubit.

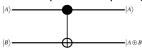
• Another simple two-qubit gate is the Controlled-U gate:



- Some exercises:
 - Build a CNOT gate from one Controlled-Z gate and two Hadamard gates.
 - Show that:

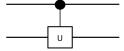


The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

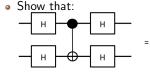


with matrix representation $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. The top qubit is called the control qubit and the bottom qubit is called the target qubit.

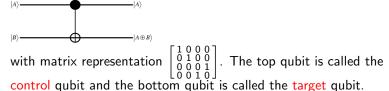
Another simple two-qubit gate is the Controlled-U gate:



Some exercises:



The simplest two-qubit gate is the Controlled-NOT or CNOT gate:



Another simple two-qubit gate is the Controlled-U gate:



Question

For a single qubit U, can we implement Controlled-U gate using only CNOT and single-qubit gates?

Question

For a single qubit U, can we implement Controlled-U gate using only CNOT and single-qubit gates?

Theoerm

Suppose U is a unitary gate on a single qubit. Then there exist unitary operators A,B,C on a single qubit such that ABC=I and $U=e^{i\alpha}AXBXC$, where α is some overall phase factor.

Controlled operations

Theoerm

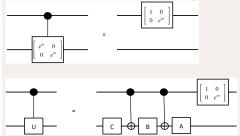
Suppose U is a unitary gate on a single qubit. Then there exist unitary operators A,B,C on a single qubit such that ABC=I and $U=e^{i\alpha}AXBXC$, where α is some overall phase factor.

Question

For a single qubit U, can we implement Controlled-U gate using only CNOT and single-qubit gates? Yes

Construction sketch

The construction follows from the following circuit equivalences.



End