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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |ψi 〉 from a fixed set of states |ψ1〉 , ...., |ψn〉
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify i .

Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

Assume n = 2 and let |ψ1〉 and |ψ2〉 be non-orthogonal.
The most general strategy for Bob is to measure using operators
{Mm} and use a function f : {1, ...,m} → {1, 2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.
Let Ei =

∑
j :f (j)=i M

†
j Mj for i = 1, 2.

Since this is a winning strategy for Bob, we have:
〈ψ1|E1 |ψ1〉 = 1; 〈ψ2|E2 |ψ2〉 = 1
Claim 2.1:

√
E2 |ψ1〉 = 0

Claim 2.2: Decompose |ψ2〉 = α |ψ1〉+ β |φ〉, where |φ〉 is
orthonormal to |ψ1〉. Then |β| < 1.
Claim 2.3: 〈ψ2|E2 |ψ2〉 = |β|2 〈φ|E2 |φ〉 ≤ |β|2 < 1.
The above contradicts with the fourth bullet item.
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Quantum Mechanics
Superdense coding: Quiz-1

Superdense coding problem

Alice wants to send two classical bits to Bob. They share a Bell pair
and the constraint is that Alice can only send a single qubit to Bob.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurement is a special class of measurements and
defines as special case of measurement postulate 3.

Is this a weaker notion than the generalized measurement
postulate? No

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Observation: Generalized measurements where the measurement
operators are constrained to be orthogonal projectors are the
same as projective measurements.
Exercise: Mm are orthogonal projectors if and only if Mm are
Hermitian and MmMm′ = δm,m′Mm.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Observation: Generalized measurements where the measurement
operators are constrained to be orthogonal projectors are the
same as projective measurements.
Exercise: Mm are orthogonal projectors if and only if Mm are
Hermitian and MmMm′ = δm,m′Mm.
Observation: Generalized measurements where the measurement
operators Mm have additional constraints that Mm are Hermitian
and MmMm′ = δm,m′Mm, are the same as projective
measurements.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Claim: The average value of the measurement, denoted by E[M],
is given by E[M] = 〈ψ|M |ψ〉.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Exercise: Suppose we measure state ψ that is an eigenvector
corresponding to eigenvalue m of the observable M. What is
E[M]?
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Describing the observable M is one way to define the projective
measurement. Other ways include:

A set of orthogonal projectors Pm satisfying completeness, that is,∑
m Pm = I . The observable in this case is

∑
m mPm.

An orthonormal basis |m〉 in which case, Pm = |m〉 〈m|.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Exercise: Discuss projective measurement of the state |0〉+|1〉√
2

w.r.t. observable Z .
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Quantum Mechanics
Postulates: POVM measurements

The measurement postulate defines rules for
1 measurement statistics, and
2 post-measurement state.

For certain applications, the post-measurement state is not very
important.

Can you think of such a scenario?

POVM stands for Positive Operator-Valued Measure. The main
ideas are captured in the following points:

For generalised measurement operators Mm and state |ψ〉, the
measurement statistics are given by p(m) = 〈ψ|M†

mM |ψ〉.
Since we are interested only in the measurement statistics, it will
be sufficient to describe the measurement using positive operators

Em ≡ M†
mMm

Observation:
∑

m Em = I and p(m) = 〈ψ|Em |ψ〉.
Notation: The operators Em are called POVM elements associated
with the measurement and set {Em} is known as POVM.
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Quantum Mechanics
Postulates: POVM measurements

POVM stands for Positive Operator-Valued Measure. The main
ideas are captured in the following points:

For generalised measurement operators Mm and state |ψ〉, the
measurement statistics are given by p(m) = 〈ψ|M†

mM |ψ〉.
Since we are interested only in the measurement statistics, it will
be sufficient to describe the measurement using positive operators

Em ≡ M†
mMm

Observation:
∑

m Em = I and p(m) = 〈ψ|Em |ψ〉.
Notation: The operators Em are called POVM elements associated
with the measurement and set {Em} is known as POVM.

Exercise: Let Em be an arbitrary set of positive operators such
that

∑
m Em = I . Does there exist measurement operators Mm

with the same measurement statistics are ones defined by Em?
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Quantum Mechanics
Postulates: POVM measurements

POVM stands for Positive Operator-Valued Measure. The main
ideas are captured in the following points:

For generalised measurement operators Mm and state |ψ〉, the
measurement statistics are given by p(m) = 〈ψ|M†

mM |ψ〉.
Since we are interested only in the measurement statistics, it will
be sufficient to describe the measurement using positive operators

Em ≡ M†
mMm

Observation:
∑

m Em = I and p(m) = 〈ψ|Em |ψ〉.
Notation: The operators Em are called POVM elements associated
with the measurement and set {Em} is known as POVM.

Exercise: Let Em be an arbitrary set of positive operators such
that

∑
m Em = I . Does there exist measurement operators Mm

with the same measurement statistics are ones defined by Em?

Yes. Mm =
√
Em.
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Quantum Mechanics
Postulates: POVM measurements

POVM application: Show that the following POVM

E1 ≡
√

2

1 +
√

2
|1〉 〈1|

E2 ≡
√

2

1 +
√

2

(|0〉 − |1〉)(〈0| − 〈1|)
2

E3 ≡ I − E1 − E2

helps to distinguish states |0〉 and |0〉+|1〉√
2

with the caveat that

sometimes it may output “don’t know”.
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Quantum Mechanics
Postulates: Composite system

Postulate 4

The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if
we have systems numbered 1 through n, and system number i is
prepared in state |ψi 〉, then the joint state of the total system is
|ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉.
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Quantum Mechanics
Postulates: Composite system

We commented earlier that projective measurement is not a
weaker notion when compared with generalised measurements
(even though it may seem so).
We will not argue that (Projective measurement + Unitary
operators) has the same power generalised measurement.

Lemma

Suppose V is a Hilbert space with a subspace W . Suppose
U : W → V is a linear operator that preserves inner products, that is,
for any |w1〉 , |w2〉 ∈W ,

〈w1|U†U |w2〉 = 〈w1|w2〉 .

Show that there exists a unitary operator U ′ : V → V that extends U.
That is, U ′ |w〉 = U |w〉 for all |w〉 ∈W but U ′ is defined on the
entire space V .
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Quantum Mechanics
Postulates: Composite system

Claim: (Projective measurement + unitary operators) =
generalised measurement.

Proof sketch

Let Q be the state space of the quantum system in which we
would like to make a generalised measurement using
measurement operators Mm.
We introduce an ancilla system with state space M with
orthonormal basis |m〉.
Let U be an operator defined as

U |ψ〉 |0〉 ≡
∑
m

Mm |ψ〉 |m〉

where |0〉 is an arbitrary state of M.
Claim 1: U preserves inner products between states of the form
|ψ〉 |0〉.
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Quantum Mechanics
Postulates: Composite system

Claim: (Projective measurement + unitary operators) =
generalised measurement.

Proof sketch

Let Q be the state space of the quantum system in which we
would like to make a generalised measurement using
measurement operators Mm.
We introduce an ancilla system with state space M with
orthonormal basis |m〉.
Let U be an operator defined as

U |ψ〉 |0〉 ≡
∑
m

Mm |ψ〉 |m〉

where |0〉 is an arbitrary state of M.
Claim 1: U preserves inner products between states of the form
|ψ〉 |0〉.
Claim 2: U can be extended to a unitary operator on Q ⊗M (let
us denote this by U itself).
Claim 3: Let Pm = IQ ⊗ |m〉 〈m|. Projective measurement using
Pm on Q ⊗M is similar to generalised measurement using Mm on
Q.
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End
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