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Quantum Mechanics
Linear algebra: Adjoints and Hermitian operators

Spectral Decomposition Theorem

Any normal operator M on a vector space V is a diagonalizable with
respect to some orthonormal basis for V . Conversely, any
diagononalizable operator is normal.

Exercise: Show that a normal matrix is Hermitian if and only if it
has real eigenvalues.
Unitary matrix: A matrix U is called unitary if UU† = U†U = I .

Unitary operator: An operator U is unitary if UU† = U†U = I .
Exercise: Show that unitary operators preserve inner products.
Exercise: Let |vi 〉 be any orthonormal basis set and let
|wi 〉 = U |vi 〉. Then |wi 〉 is an orthonormal basis set. Moreover,
U =

∑
i |wi 〉 〈vi |.

Exercise: If |vi 〉 and |wi 〉 are two orthonormal basis sets, then
U ≡

∑
i |wi 〉 〈vi | is a unitary operator.

Exercise: Show that all the eigenvalues of a unitary matrix have
modulus 1. This means that they can be written as e iθ for some
real θ.
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Quantum Mechanics
Linear algebra: Adjoints and Hermitian operators

Positive operator: An operator A is said to be a positive operator
if for every vector |v〉, (|v〉 ,A |v〉) is a real non-negative number.
Positive definite operator: An operator A is said to be a positive
operator if for every vector |v〉, (|v〉 ,A |v〉) is a real number
strictly greater than 0.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information



Quantum Mechanics
Linear algebra: Adjoints and Hermitian operators

Positive operator: An operator A is said to be a positive operator
if for every vector |v〉, (|v〉 ,A |v〉) is a real non-negative number.
Positive definite operator: An operator A is said to be a positive
operator if for every vector |v〉, (|v〉 ,A |v〉) is a real number
strictly greater than 0.
Exercises:

Show that a positive operator is necessarily Hermitian.
Show that the eigenvectors of a Hermitian operator with different
eigenvalues are necessarily orthogonal.
Show that for any operator A, A†A is positive.
Show that the eigenvalues of a projector P are all either 0 or 1.
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Quantum Mechanics
Linear algebra: Tensor products

The tensor product is a way of putting vector spaces together
to form larger vector spaces.

Suppose V and W are Hilbert spaces of dimension m and n
respectively, then V ⊗W denotes an mn-dimensional vector
space.
The elements of V ⊗W are linear combinations of tensor
products |v〉 ⊗ |w〉 of elements |v〉 ∈ V and |w〉 ∈W .
If |i〉’s and |j〉’s are orthonormal bases for V and W
respectively, then |i〉 ⊗ |j〉’s are orthonormal basis for V ⊗W .
|v〉 ⊗ |w〉 is also written as |vw〉 , |v〉 |w〉, and |v ,w〉.
Example: If V is a two-dimensional vector space with basis
{|0〉 , |1〉}, then |0〉 ⊗ |0〉+ |1〉 ⊗ |1〉 is an element of V ⊗ V .

Notation: |ψ〉⊗k means |ψ〉 tensored with itself k times.
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Quantum Mechanics
Linear algebra: Tensor products

Some properties of tensor products:

For any arbitrary scalar z and elements |v〉 ∈ V and |w〉 ∈W :

z(|v〉 ⊗ |w〉) = (z |v〉)⊗ |w〉 = |v〉 ⊗ (z |w〉).

For arbitrary |v1〉 , |v2〉 ∈ V and |w〉 ∈W ,

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉 .

For arbitrary |v〉 ∈ V and |w1〉 , |w2〉 ∈W ,

|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉 .
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Quantum Mechanics
Linear algebra: Tensor products

Linear operators on V ⊗W : Let A and B be linear operators on
V and W respectively. Then A⊗ B denotes a linear operator on
V ⊗W defined as:

(A⊗ B)(|v〉 ⊗ |w〉) = A |v〉 ⊗ B |w〉 .

Furthermore, the following ensures linearity:

(A⊗ B)

(∑
i

ai |vi 〉 ⊗ |wi 〉

)
=
∑
i

aiA |vi 〉 ⊗ B |wi 〉 .

Let A : V → V ′ and B : W →W ′ be linear operators. An
arbitrary linear operator C mapping V ⊗W to V ′ ⊗W ′ can be
represented as a linear combination:

C =
∑
i

ciAi ⊗ Bi

where by definition:(∑
i

ciAi ⊗ Bi

)
|v〉 ⊗ |w〉 ≡

∑
i

ciAi |v〉 ⊗ Bi |w〉 .
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Quantum Mechanics
Linear algebra: Tensor products

Linear operators on V ⊗W : Let A and B be linear operators on
V and W respectively. Then A⊗ B denotes a linear operator on
V ⊗W defined as:

(A⊗ B)(|v〉 ⊗ |w〉) = A |v〉 ⊗ B |w〉 .

Furthermore, the following ensures linearity:

(A⊗ B)

(∑
i

ai |vi 〉 ⊗ |wi 〉

)
=
∑
i

aiA |vi 〉 ⊗ B |wi 〉 .

Let A : V → V ′ and B : W →W ′ be linear operators. An
arbitrary linear operator C mapping V ⊗W to V ′ ⊗W ′ can be
represented as a linear combination:

C =
∑
i

ciAi ⊗ Bi

where by definition:
(
∑

i ciAi ⊗ Bi ) |v〉 ⊗ |w〉 ≡
∑

i ciAi |v〉 ⊗ Bi |w〉.
The inner product on V ⊗W is defined as:∑

i

ai |vi 〉 ⊗ |wi 〉 ,
∑
j

bj
∣∣v ′j 〉⊗ ∣∣w ′j 〉

 ≡∑
ij

a∗i bj
〈
vi
∣∣v ′j 〉 〈wj

∣∣w ′j 〉 .
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Quantum Mechanics
Linear algebra: Tensor products

Matrix representation: The matrix representation for A⊗ B is
called the Kronecker product. Let A be a m × n matrix and B be
a p × q matrix. Then the matrix representation of A⊗ B is given
as:

A⊗ B ≡


A11B A12B . . . A1nB
A21 A22B . . . A2nB

...
...

...
...

Am1B Am2B . . . AmnB


Example: What is

[
1
2

]
⊗
[

2
3

]
?
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Quantum Mechanics
Linear algebra: Tensor products

Matrix representation: The matrix representation for A⊗ B is
called the Kronecker product. Let A be a m × n matrix and B be
a p × q matrix. Then the matrix representation of A⊗ B is given
as:

A⊗ B ≡


A11B A12B . . . A1nB
A21 A22B . . . A2nB

...
...

...
...

Am1B Am2B . . . AmnB



Example: What is

[
1
2

]
⊗
[

2
3

]
?


2
3
4
6
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Quantum Mechanics
Linear algebra: Tensor products

Exercises:

Show that
(A⊗B)∗ = A∗⊗B∗; (A⊗B)T = AT ⊗BT ; (A⊗B)† = A†⊗B†.
Show that the tensor product of two unitary operators is
unitary.
Show that the tensor product of two Hermitian operators is
Hermitian.
Show that the tensor product of two positive operators is
postive.
Show that the tensor product of two projectors is a projector.
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Quantum Mechanics
Linear algebra: Operator functions

One can define matrix functions on normal matrices by using
the following construction: Let A =

∑
a a |a〉 〈a| be a spectral

decomposition for a normal operator A. We define:

f (A) =
∑
a

f (a) |a〉 〈a|

Exercise: Show that exp(θZ ) =

[
eθ 0
0 e−θ

]
.

Exercise: Find the square root of the matrix

[
4 3
3 4

]
.
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Quantum Mechanics
Postulates

The postulates of quantum mechanics were derived after a
long process of trial and error.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector
space with inner product (Hilbert space) known as the state space
of the system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.
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Quantum Mechanics
Postulates

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space
with inner product (Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which
is a unit vector in the system’s state space.

Determining the state space of real systems may be complicated
and beyond the scope of our discussion.
We start with a simplest quantum mechanical system (a qubit)
that has a two-dimensional state space with |0〉 and |1〉 being the
orthonormal basis. This system is described by a state vector |ψ〉
where 〈ψ|ψ〉 = 1.
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Quantum Mechanics
Postulates

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space
with inner product (Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which
is a unit vector in the system’s state space.

Determining the state space of real systems may be complicated
and beyond the scope of our discussion.
We start with a simplest quantum mechanical system (a qubit)
that has a two-dimensional state space with |0〉 and |1〉 being the
orthonormal basis. This system is described by a state vector |ψ〉
where 〈ψ|ψ〉 = 1.
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Quantum Mechanics
Postulates

Postulate 2 (Evolution)

The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |ψ〉 of the system at time t1 is
related to the state |ψ′〉 of the system at time t2 by a unitary operator
U which only depends on the times t1 and t2, |ψ′〉 = U |ψ〉.

Doesn’t applying a unitary gate contradict with the system being
closed?
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

The index m refers to the measurement outcomes that may occur
in the experiment.
If the state of the system is |ψ〉 immediately before the
measurement, then the probability that the result m occurs is
given by

p(m) = 〈ψ|M†mMm |ψ〉 ,

and the state of the system after the measurement is given by

Mm |ψ〉√
〈ψ|M†mMm |ψ〉

The measurement operators satisfy the completeness equation,∑
m

M†mMm = I

.
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

The index m refers to the measurement outcomes that may occur
in the experiment.
If the state of the system is |ψ〉 immediately before the
measurement, then the probability that the result m occurs is
given by p(m) = 〈ψ|M†mMm |ψ〉, and the state of the system

after the measurement is given by Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
The measurement operators satisfy the completeness equation,∑

m M†mMm = I .

Exercise: Show that
∑

m p(m) = 1.
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

The index m refers to the measurement outcomes that may occur
in the experiment.
If the state of the system is |ψ〉 immediately before the
measurement, then the probability that the result m occurs is
given by p(m) = 〈ψ|M†mMm |ψ〉, and the state of the system

after the measurement is given by Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
The measurement operators satisfy the completeness equation,∑

m M†mMm = I .

Exercise: Consider a single-qubit scenario with measurement
operators M0 = |0〉 〈0| and M1 = |1〉 〈1|. Compare the above
properties with what we did in earlier lectures.
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

The index m refers to the measurement outcomes that may occur
in the experiment.
If the state of the system is |ψ〉 immediately before the
measurement, then the probability that the result m occurs is
given by p(m) = 〈ψ|M†mMm |ψ〉, and the state of the system

after the measurement is given by Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
The measurement operators satisfy the completeness equation,∑

m M†mMm = I .

Cascaded measurements: Suppose {Ll} and {Mm} are two sets of
measurement operators. Show that a measurement defined by the
measurement operators {Ll} followed by {Mm} is physically
equivalent to a single measurement defined by the measurement
operators {Nlm} where Nlm = MmLl .
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Quantum Mechanics
Postulates

We hinted earlier that distinguishing non-orthogonal states may
not be possible. Now that we understands measurements, let us
try to formulate and prove.
The ability to distinguish quantum states can be formalised as the
following game between two parties:

Distinguishing quantum states

Alice chooses a state |ψi 〉 from a fixed set of states |ψ1〉 , ...., |ψn〉
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify i .

Claim 1: There is a winning strategy for Bob if |ψ1〉 , ..., |ψn〉 are
orthonormal states.
Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |ψi 〉 from a fixed set of states |ψ1〉 , ...., |ψn〉
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify i .

Claim 1: There is a winning strategy for Bob if |ψ1〉 , ..., |ψn〉 are
orthonormal states.

Define measurement operators Mi = |ψi 〉 〈ψi |.
Define M0 =

√
I −

∑n
i=1 Mi . Note that since I −

∑n
i=1 Mi is a

positive operator, square root is well defined.
Claim 1.1: M0,M1, ...,Mn satisfy completeness relation.
Claim 1.2: Given state |ψi 〉, p(i) = 1.
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |ψi 〉 from a fixed set of states |ψ1〉 , ...., |ψn〉
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify i .

Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

Assume n = 2 and let |ψ1〉 and |ψ2〉 be non-orthogonal.
The most general strategy for Bob is to measure using operators
{Mm} and use a function f : {1, ...,m} → {1, 2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.
Let Ei =

∑
j :f (j)=i M

†
j Mj for i = 1, 2.

Since this is a winning strategy for Bob, we have:

〈ψ1|E1 |ψ1〉 = 1; 〈ψ2|E2 |ψ2〉 = 1
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |ψi 〉 from a fixed set of states |ψ1〉 , ...., |ψn〉
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify i .

Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

Assume n = 2 and let |ψ1〉 and |ψ2〉 be non-orthogonal.
The most general strategy for Bob is to measure using operators
{Mm} and use a function f : {1, ...,m} → {1, 2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.
Let Ei =

∑
j :f (j)=i M

†
j Mj for i = 1, 2.

Since this is a winning strategy for Bob, we have:
〈ψ1|E1 |ψ1〉 = 1; 〈ψ2|E2 |ψ2〉 = 1
Claim 2.1:

√
E2 |ψ1〉 = 0
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |ψi 〉 from a fixed set of states |ψ1〉 , ...., |ψn〉
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify i .

Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

Assume n = 2 and let |ψ1〉 and |ψ2〉 be non-orthogonal.
The most general strategy for Bob is to measure using operators
{Mm} and use a function f : {1, ...,m} → {1, 2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.
Let Ei =

∑
j :f (j)=i M

†
j Mj for i = 1, 2.

Since this is a winning strategy for Bob, we have:
〈ψ1|E1 |ψ1〉 = 1; 〈ψ2|E2 |ψ2〉 = 1
Claim 2.1:

√
E2 |ψ1〉 = 0

Claim 2.2: Decompose |ψ2〉 = α |ψ1〉+ β |φ〉, where |φ〉 is
orthonormal to |ψ1〉. Then |β| < 1.
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |ψi 〉 from a fixed set of states |ψ1〉 , ...., |ψn〉
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify i .

Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

Assume n = 2 and let |ψ1〉 and |ψ2〉 be non-orthogonal.
The most general strategy for Bob is to measure using operators
{Mm} and use a function f : {1, ...,m} → {1, 2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.
Let Ei =

∑
j :f (j)=i M

†
j Mj for i = 1, 2.

Since this is a winning strategy for Bob, we have:
〈ψ1|E1 |ψ1〉 = 1; 〈ψ2|E2 |ψ2〉 = 1
Claim 2.1:

√
E2 |ψ1〉 = 0

Claim 2.2: Decompose |ψ2〉 = α |ψ1〉+ β |φ〉, where |φ〉 is
orthonormal to |ψ1〉. Then |β| < 1.
Claim 2.3: 〈ψ2|E2 |ψ2〉 = |β|2 〈φ|E2 |φ〉 ≤ |β|2 < 1.
The above contradicts with the fourth bullet item.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information



End
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