
COL863: Quantum Computation and Information Quiz: 2

1. Draw a quantum circuit on two qubits that copies the $|+\rangle$, $|-\rangle$ state. That is, the circuit should have the following behaviour:

Input	Output
$ +\rangle 0\rangle$	$\left +\right\rangle\left +\right\rangle$
$\left - \right\rangle \left 0 \right\rangle$	$\left - ight angle\left - ight angle$

2. Consider the circuit below:

Here α_i denotes the operation $\begin{bmatrix} 1 & 0 \\ 0 & e^{i\alpha_i} \end{bmatrix}$. Suppose at the end the measurement is taken in the computational basis. What is the probability of seeing $|00...0\rangle$?

- 3. Show that $R_x(\theta)$ defined as $e^{-i\theta X/2}$ is indeed $\cos \frac{\theta}{2} i \sin \frac{\theta}{2} X$. (See the last linear-algebra slide for the meaning of $e^{-i\theta X/2}$).
- 4. You are given a function $f : \{0,1\}^n \to \{0,1\}$ which has the following property: - There exists a string $s \in \{0,1\}^n$ such that for every $x \in \{0,1\}^n$, $f(x) = (s \cdot x)$, where (·) indicates the dot product modulo 2.

Your goal in this problem is to find the string s. Note that in the classical setting you can find s by making n queries to the function. We would like to do this using much lesser queries in the Quantum setting. Describe how you can use the quantum circuit for the Deutsch-Jozsa problem to solve this problem.