COL863: Quantum Computation and Information

Homework: 2 (This is for practice. You need not submit.)

1. Exercises from the book: 2.2, 2.3, 2.4, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, $2.17,2.18,2.19,2.20,2.22,2.23,2.24,2.25,2.26,2.27,2.28,2.29,2.30,2.31,2.32,2.33$, 2.34.
2. A P-matrix is a matrix $\Pi \in \mathbb{C}^{n \times n}$ such that $\Pi^{2}=\Pi$. Answer the following question:

State true or false with reasons: For any Hermitian matrix $\Pi \in \mathbb{C}^{n \times n}, \Pi$ is a P-matrix if and only if $\Pi=\sum_{i=1}^{k}\left|v_{i}\right\rangle\left\langle v_{i}\right|$ for some orthonormal vectors $\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{k}\right\rangle \in \mathbb{C}^{n}$.
3. An operator M on a finite dimensional vector space V with inner products is said to be norm preserving if for every $|w\rangle \in V, \||w\rangle\|=\| M|w\rangle \|$. Answer the following question. - Let $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ be an orthonormal basis for V. What conditions on numbers $a_{1}, \ldots, a_{n} \in$ \mathbb{C} are necessary and sufficient for $M \equiv \sum_{i=1}^{n} a_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$ to be norm preserving? Give reasons.
4. Show that any positive operator on a finite dimensional inner product space is necessarily a Hermitian.

