- 1. Can the following two-qubit state $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ be represented as $(\alpha|0\rangle+\beta|1\rangle)(\alpha'|0\rangle+\beta'|1\rangle)$?
- 2. Can there exist a single qubit gate with the following truth table? Give reasons.

Input	Output
$ 0\rangle$	$\frac{\sqrt{3}}{2}\ket{0} + \frac{1}{2}\ket{1}$
$ 1\rangle$	$\frac{1}{2}\ket{0} + \frac{\sqrt{3}}{2}\ket{1}$

3. Show that there exist a single qubit gate with the following truth table? Give the matrix representation of such a gate.

Input	Output
$ 0\rangle$	$\frac{\sqrt{3}}{2}\ket{0} - \frac{1}{2}\ket{1}$
$ 1\rangle$	$\frac{1}{2} 0\rangle + \frac{\sqrt{3}}{2} 1\rangle$

4. Draw the classical circuit for computing the Boolean function $f:\{0,1\}^2 \to \{0,1\}$ given by the following truth table.

x	f(x)
00	1
01	0
10	1
11	0

Give the Quantum analogue of your classical circuit using Toffoli gates.

5. Output $|\psi\rangle$ when the input to the circuit is $|000\rangle$. Output $|\psi\rangle$ when the input is $[\alpha |0\rangle + \beta |1\rangle] |00\rangle$.

1

6. Output $|\psi\rangle$ when the input to the circuit is $|000\rangle$. Output $|\psi\rangle$ when the input is $[\alpha |0\rangle + \beta |1\rangle] |00\rangle$.

- 7. Can you use a single qubit as a source of randomness? How?
- 8. Let the matrix representation of gates U_1 and U_2 be $U_1 = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ and $U_2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Give the states $|\psi_1\rangle$, $|\psi_2\rangle$, $|\psi_3\rangle$, $|\psi_4\rangle$ in the circuits below.

9. What is the input-output behaviour of the following circuit. (U^* denotes conjugate transpose.)

Input	Output
$ 00\rangle \psi\rangle$	
$ 01 angle \psi angle$	
$ 10\rangle \psi\rangle$	
$ 11\rangle \psi\rangle$	

10. Give the the intermediate states $|\psi_0\rangle$, $|\psi_1\rangle$, $|\psi_2\rangle$, $|\psi_3\rangle$ of the 3-qubit circuit given below. Show your calculations.

11. Suppose you have two qubits in the bell state $\frac{|01\rangle - |10\rangle}{\sqrt{2}}$ and you apply the teleportation protocol to the first qubit. What is the result? (*Please try giving an appropriate interpretation for your calculations.*)