COL863: Quantum Computation and Information

Homework: 1 (This is for practice. You need not submit.)

1. Can the following two-qubit state $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ be represented as $(\alpha|0\rangle+\beta|1\rangle)\left(\alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle\right)$?
2. Can there exist a single qubit gate with the following truth table? Give reasons.

Input	Output
$\|0\rangle$	$\frac{\sqrt{3}}{2}\|0\rangle+\frac{1}{2}\|1\rangle$
$\|1\rangle$	$\frac{1}{2}\|0\rangle+\frac{\sqrt{3}}{2}\|1\rangle$

3. Show that there exist a single qubit gate with the following truth table? Give the matrix representation of such a gate.

Input	Output
$\|0\rangle$	$\frac{\sqrt{3}}{2}\|0\rangle-\frac{1}{2}\|1\rangle$
$\|1\rangle$	$\frac{1}{2}\|0\rangle+\frac{\sqrt{3}}{2}\|1\rangle$

4. Draw the classical circuit for computing the Boolean function $f:\{0,1\}^{2} \rightarrow\{0,1\}$ given by the following truth table.

x	$f(x)$
00	1
01	0
10	1
11	0

Give the Quantum analogue of your classical circuit using Toffoli gates.
5. Output $|\psi\rangle$ when the input to the circuit is $|000\rangle$. Output $|\psi\rangle$ when the input is $[\alpha|0\rangle+\beta|1\rangle]|00\rangle$.

6. Output $|\psi\rangle$ when the input to the circuit is $|000\rangle$. Output $|\psi\rangle$ when the input is $[\alpha|0\rangle+\beta|1\rangle]|00\rangle$.

7. Can you use a single qubit as a source of randomness? How?
8. Let the matrix representation of gates U_{1} and U_{2} be $U_{1}=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$ and $U_{2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Give the states $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left|\psi_{3}\right\rangle,\left|\psi_{4}\right\rangle$ in the circuits below.

9. What is the input-output behaviour of the following circuit. (U^{*} denotes conjugate transpose.)

Input	Output
$\|00\rangle\|\psi\rangle$	
$\|01\rangle\|\psi\rangle$	
$\|10\rangle\|\psi\rangle$	
$\|11\rangle\|\psi\rangle$	

10. Give the the intermediate states $\left|\psi_{0}\right\rangle,\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle,\left|\psi_{3}\right\rangle$ of the 3-qubit circuit given below. Show your calculations.

11. Suppose you have two qubits in the bell state $\frac{|01\rangle-|10\rangle}{\sqrt{2}}$ and you apply the teleportation protocol to the first qubit. What is the result? (Please try giving an appropriate interpretation for your calculations.)
