COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Search Algorithms

Quantum Search Algorithms The oracle

Search problem

Let $N = 2^n$ and let $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ be a function that has $1 \le M \le N$ solutions. That is, there are M values for which f evaluates to 1. Find one of the solutions.

• Question: What is the running time for the classical solution?

Quantum Search Algorithms The oracle

Search problem

Let $N = 2^n$ and let $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ be a function that has $1 \le M \le N$ solutions. That is, there are M values for which f evaluates to 1. Find one of the solutions.

• Question: What is the running time for the classical solution? $\overline{O(N)}$

Quantum Search Algorithms The oracle

Search problem

Let $N = 2^n$ and let $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$ be a function that has $1 \le M \le N$ solutions. That is, there are M values for which f evaluates to 1. Find one of the solutions.

 $\bullet\,$ Let ${\mathcal O}$ be a quantum oracle with the following behaviour:

$$|x\rangle |q\rangle \stackrel{\mathcal{O}}{\rightarrow} |x\rangle |q \oplus f(x)\rangle$$
.

- <u>Claim 1</u>: $|x\rangle \left(\frac{|0\rangle |1\rangle}{\sqrt{2}}\right) \xrightarrow{\mathcal{O}} (-1)^{f(x)} |x\rangle \left(\frac{|0\rangle |1\rangle}{\sqrt{2}}\right)$
- We will always use the state $|-\rangle$ as the second register in the discussion. So, we may as well describe the behaviour of the oracle ${\cal O}$ in short as:

$$\left|x\right\rangle \stackrel{\mathcal{O}}{\longrightarrow} (-1)^{f(x)}\left|x\right\rangle.$$

• <u>Claim 2</u>: There is a quantum algorithm that applies the search oracle \mathcal{O} , $O(\sqrt{\frac{N}{M}})$ times in order to obtain a solution.

• Here is the schematic circuit for quantum search:

• Where G, called the Grover operator or Grover iteration, is:

• Where G, called the Grover operator or Grover iteration, is:

 Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is (2 |0⟩ ⟨0| − 1).

• Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is (2 |0⟩ ⟨0| − 1).
- Let $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle \langle 0| I)H^{\oplus n}$, may be written as $2|\psi\rangle \langle \psi| I$.

• Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is (2 |0⟩ ⟨0| − 1).
- Let $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle \langle 0| I)H^{\oplus n}$, may be written as $2|\psi\rangle \langle \psi| I$.
- The Grover operator G can then be written as $G = (2 |\psi\rangle \langle \psi| I) O$.

• Where G, called the Grover operator or Grover iteration, is:

• Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2 | 0 \rangle \langle 0 | - I)$.

• Let
$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$
.

- Exercise: The operation after the oracle call in the Grover operator, that is H^{⊕n}(2|0⟩ ⟨0| − I)H^{⊕n}, may be written as 2 |ψ⟩ ⟨ψ| − I.
- The Grover operator *G* can then be written as $G = (2 |\psi\rangle \langle \psi| I) \mathcal{O}.$
- <u>Exercise</u>: Show that the operation $(2 |\psi\rangle \langle \psi| I)$ applied to a general state $\sum_{k} \alpha_{k} |k\rangle$ gives $\sum_{k} (-\alpha_{k} + 2\langle \alpha \rangle) |k\rangle$.

• <u>Question</u>: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?

• <u>Question</u>: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?

Let

$$\begin{aligned} |\alpha\rangle &= \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle, \\ |\beta\rangle &= \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle. \end{aligned}$$

• Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?

Let

$$\begin{aligned} |\alpha\rangle &= \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle, \\ |\beta\rangle &= \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle. \end{aligned}$$

• Observation:
$$|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle.$$

- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- <u>Claim 1</u>: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- <u>Claim 2</u> The effect of $(2 |\psi\rangle \langle \psi| I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

- <u>Question</u>: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?
- Let $|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle$, and $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle$.
- <u>Observation</u>: $|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle.$
- \bullet Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle.$
- Claim 1: The effect of ${\cal O}$ on a vector on the plane is reflection about the vector $|\alpha\rangle.$
- Claim 2 The effect of $(2 |\psi\rangle \langle \psi| I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

Quantum Search Algorithms

Geometric visualization

• Let
$$|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle$$
, and $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle$.

- <u>Observation</u>: $|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle$.
- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- Claim 1: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- <u>Claim 2</u> The effect of $(2 |\psi\rangle \langle \psi| I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

• Let
$$|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle$$
, and $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle$.

• Observation:
$$|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle.$$

- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- <u>Claim 1</u>: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- Claim 2 The effect of $(2 |\psi\rangle \langle \psi| I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

• Let $\cos \frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle = \cos \frac{\theta}{2} |\alpha\rangle + \sin \frac{\theta}{2} |\beta\rangle$ and $G |\psi\rangle = \cos \frac{3\theta}{2} |\alpha\rangle + \sin \frac{3\theta}{2} |\beta\rangle$

• <u>Exercise</u>: Show that $G^k |\psi\rangle = \cos \frac{(2k+1)\theta}{2} |\alpha\rangle + \sin \frac{(2k+1)\theta}{2} |\beta\rangle$.

• <u>Question</u>: How many Grover iterations are required to sample a solution with good probability?

- Let $\cos \frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle = \cos \frac{\theta}{2} |\alpha\rangle + \sin \frac{\theta}{2} |\beta\rangle$ and $G |\psi\rangle = \cos \frac{3\theta}{2} |\alpha\rangle + \sin \frac{3\theta}{2} |\beta\rangle$
- <u>Exercise</u>: Show that $G^k |\psi\rangle = \cos \frac{(2k+1)\theta}{2} |\alpha\rangle + \sin \frac{(2k+1)\theta}{2} |\beta\rangle$.
- <u>Question</u>: How many Grover iterations are required to sample a solution with good probability?
- Let $R = CI\left(\frac{\arccos\sqrt{M/N}}{\theta}\right)$, where CI(.) denotes closest integer.
- Exercise: Show that if *R* Grover iterations are executed, then the probability of measuring a solution is at least 1/2.

Quantum Search Algorithms

Geometric visualization

- Let $\cos \frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle = \cos \frac{\theta}{2} |\alpha\rangle + \sin \frac{\theta}{2} |\beta\rangle$ and $G |\psi\rangle = \cos \frac{3\theta}{2} |\alpha\rangle + \sin \frac{3\theta}{2} |\beta\rangle$
- Exercise: Show that $G^k |\psi\rangle = \cos \frac{(2k+1)\theta}{2} |\alpha\rangle + \sin \frac{(2k+1)\theta}{2} |\beta\rangle$.
- <u>Question</u>: How many Grover iterations are required to sample a solution with good probability?

• Let
$$R = CI\left(\frac{\arccos\sqrt{M/N}}{\theta}\right)$$
, where $CI(.)$ denotes closest integer.

- Exercise: Show that if *R* Grover iterations are executed, then the probability of measuring a solution is at least 1/2.
- Exercise: If $M \le N/2$, then $R \le \lceil \frac{\pi}{4} \sqrt{\frac{N}{M}} \rceil$.

End

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information