COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Search Algorithms

Quantum Search Algorithms
 \section*{The oracle}

Search problem

Let $N=2^{n}$ and let $f:\{0, \ldots, N-1\} \rightarrow\{0,1\}$ be a function that has $1 \leq M \leq N$ solutions. That is, there are M values for which f evaluates to 1 . Find one of the solutions.

- Question: What is the running time for the classical solution?

Quantum Search Algorithms

The oracle

Search problem

Let $N=2^{n}$ and let $f:\{0, \ldots, N-1\} \rightarrow\{0,1\}$ be a function that has $1 \leq M \leq N$ solutions. That is, there are M values for which f evaluates to 1 . Find one of the solutions.

- Question: What is the running time for the classical solution? O(N)

Quantum Search Algorithms
 \section*{The oracle}

Search problem

Let $N=2^{n}$ and let $f:\{0, \ldots, N-1\} \rightarrow\{0,1\}$ be a function that has $1 \leq M \leq N$ solutions. That is, there are M values for which f evaluates to 1 . Find one of the solutions.

- Let \mathcal{O} be a quantum oracle with the following behaviour:

$$
|x\rangle|q\rangle \xrightarrow{\mathcal{O}}|x\rangle|q \oplus f(x)\rangle .
$$

- Claim 1: $|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \xrightarrow{\mathcal{O}}(-1)^{f(x)}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$
- We will always use the state $|-\rangle$ as the second register in the discussion. So, we may as well describe the behaviour of the oracle \mathcal{O} in short as:

$$
|x\rangle \xrightarrow{\mathcal{O}}(-1)^{f(x)}|x\rangle .
$$

- Claim 2: There is a quantum algorithm that applies the search oracle $\mathcal{O}, O\left(\sqrt{\frac{N}{M}}\right)$ times in order to obtain a solution.

Quantum Search Algorithms

The Grover operator

- Here is the schematic circuit for quantum search:

- Where G, called the Grover operator or Grover iteration, is:

Quantum Search Algorithms

The Grover operator

- Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2|0\rangle\langle 0|-I)$.

Quantum Search Algorithms

The Grover operator

- Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2|0\rangle\langle 0|-I)$.
- Let $|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle\langle 0|-I) H^{\oplus n}$, may be written as $2|\psi\rangle\langle\psi|-I$.

Quantum Search Algorithms

The Grover operator

- Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2|0\rangle\langle 0|-I)$.
- Let $|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle\langle 0|-I) H^{\oplus n}$, may be written as $2|\psi\rangle\langle\psi|-I$.
- The Grover operator G can then be written as $G=(2|\psi\rangle\langle\psi|-I) \mathcal{O}$.

Quantum Search Algorithms

The Grover operator

- Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2|0\rangle\langle 0|-I)$.
- Let $|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle\langle 0|-I) H^{\oplus n}$, may be written as $2|\psi\rangle\langle\psi|-1$.
- The Grover operator G can then be written as $G=(2|\psi\rangle\langle\psi|-I) \mathcal{O}$.
- Exercise: Show that the operation $(2|\psi\rangle\langle\psi|-I)$ applied to a general state $\sum_{k} \alpha_{k}|k\rangle$ gives $\sum_{k}\left(-\alpha_{k}+2\langle\alpha\rangle\right)|k\rangle$.

Quantum Search Algorithms

The Grover operator

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?

Quantum Search Algorithms

Geometric visualization

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?
- Let

$$
\begin{aligned}
|\alpha\rangle & =\frac{1}{\sqrt{N-M}} \sum_{x \text { s.t. } f(x)=0}|x\rangle, \\
|\beta\rangle & =\frac{1}{\sqrt{M}} \sum_{x \text { s.t. } f(x)=1}|x\rangle .
\end{aligned}
$$

Quantum Search Algorithms

Geometric visualization

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?
- Let

$$
\begin{aligned}
|\alpha\rangle & =\frac{1}{\sqrt{N-M}} \sum_{x \text { s.t. } f(x)=0}|x\rangle, \\
|\beta\rangle & =\frac{1}{\sqrt{M}} \sum_{x \text { s.t. } f(x)=1}|x\rangle
\end{aligned}
$$

- Observation: $|\psi\rangle=\sqrt{\frac{N-M}{N}}|\alpha\rangle+\sqrt{\frac{M}{N}}|\beta\rangle$.
- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- Claim 1: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- Claim 2 The effect of $(2|\psi\rangle\langle\psi|-I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

Quantum Search Algorithms

Geometric visualization

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?
- Let $|\alpha\rangle=\frac{1}{\sqrt{N-M}} \sum_{x \text { s.t. }} f(x)=0|x\rangle$, and $|\beta\rangle=\frac{1}{\sqrt{M}} \sum_{x \text { s.t. } f(x)=1}|x\rangle$.
- Observation: $|\psi\rangle=\sqrt{\frac{N-M}{N}}|\alpha\rangle+\sqrt{\frac{M}{N}}|\beta\rangle$.
- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- Claim 1: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- Claim 2 The effect of $(2|\psi\rangle\langle\psi|-I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

Quantum Search Algorithms

Geometric visualization

- Let $|\alpha\rangle=\frac{1}{\sqrt{N-M}} \sum_{x \text { s.t. }} f(x)=0|x\rangle$, and $|\beta\rangle=\frac{1}{\sqrt{M}} \sum_{x \text { s.t. }} f(x)=1|x\rangle$.
- Observation: $|\psi\rangle=\sqrt{\frac{N-M}{N}}|\alpha\rangle+\sqrt{\frac{M}{N}}|\beta\rangle$.
- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- Claim 1: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- Claim 2 The effect of $(2|\psi\rangle\langle\psi|-I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

- Let $\cos \frac{\theta}{2}=\sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle=\cos \frac{\theta}{2}|\alpha\rangle+\sin \frac{\theta}{2}|\beta\rangle$ and $G|\psi\rangle=\cos \frac{3 \theta}{2}|\alpha\rangle+\sin \frac{3 \theta}{2}|\beta\rangle$

Quantum Search Algorithms

Geometric visualization

- Let $|\alpha\rangle=\frac{1}{\sqrt{N-M}} \sum_{x \text { s.t. }} f(x)=0|x\rangle$, and $|\beta\rangle=\frac{1}{\sqrt{M}} \sum_{x \text { s.t. }} f(x)=1|x\rangle$.
- Observation: $|\psi\rangle=\sqrt{\frac{N-M}{N}}|\alpha\rangle+\sqrt{\frac{M}{N}}|\beta\rangle$.
- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- Claim 1: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- Claim 2 The effect of $(2|\psi\rangle\langle\psi|-I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

- Let $\cos \frac{\theta}{2}=\sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle=\cos \frac{\theta}{2}|\alpha\rangle+\sin \frac{\theta}{2}|\beta\rangle$ and $G|\psi\rangle=\cos \frac{3 \theta}{2}|\alpha\rangle+\sin \frac{3 \theta}{2}|\beta\rangle$
- Exercise: Show that $G^{k}|\psi\rangle=\cos \frac{(2 k+1) \theta}{2}|\alpha\rangle+\sin \frac{(2 k+1) \theta}{2}|\beta\rangle$.

Quantum Search Algorithms

Geometric visualization

- Let $\cos \frac{\theta}{2}=\sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle=\cos \frac{\theta}{2}|\alpha\rangle+\sin \frac{\theta}{2}|\beta\rangle$ and $G|\psi\rangle=\cos \frac{3 \theta}{2}|\alpha\rangle+\sin \frac{3 \theta}{2}|\beta\rangle$
- Exercise: Show that $G^{k}|\psi\rangle=\cos \frac{(2 k+1) \theta}{2}|\alpha\rangle+\sin \frac{(2 k+1) \theta}{2}|\beta\rangle$.
- Question: How many Grover iterations are required to sample a solution with good probability?

Quantum Search Algorithms

- Let $\cos \frac{\theta}{2}=\sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle=\cos \frac{\theta}{2}|\alpha\rangle+\sin \frac{\theta}{2}|\beta\rangle$ and $G|\psi\rangle=\cos \frac{3 \theta}{2}|\alpha\rangle+\sin \frac{3 \theta}{2}|\beta\rangle$
- Exercise: Show that $G^{k}|\psi\rangle=\cos \frac{(2 k+1) \theta}{2}|\alpha\rangle+\sin \frac{(2 k+1) \theta}{2}|\beta\rangle$.
- Question: How many Grover iterations are required to sample a solution with good probability?
- Let $R=C l\left(\frac{\arccos \sqrt{M / N}}{\theta}\right)$, where $C l($.$) denotes closest integer.$
- Exercise: Show that if R Grover iterations are executed, then the probability of measuring a solution is at least $1 / 2$.

Quantum Search Algorithms

Geometric visualization

- Let $\cos \frac{\theta}{2}=\sqrt{\frac{N-M}{N}}$. So, $|\psi\rangle=\cos \frac{\theta}{2}|\alpha\rangle+\sin \frac{\theta}{2}|\beta\rangle$ and $G|\psi\rangle=\cos \frac{3 \theta}{2}|\alpha\rangle+\sin \frac{3 \theta}{2}|\beta\rangle$
- Exercise: Show that $G^{k}|\psi\rangle=\cos \frac{(2 k+1) \theta}{2}|\alpha\rangle+\sin \frac{(2 k+1) \theta}{2}|\beta\rangle$.
- Question: How many Grover iterations are required to sample a solution with good probability?
- Let $R=C l\left(\frac{\arccos \sqrt{M / N}}{\theta}\right)$, where $C l($.$) denotes closest integer.$
- Exercise: Show that if R Grover iterations are executed, then the probability of measuring a solution is at least $1 / 2$.
- Exercise: If $M \leq N / 2$, then $R \leq\left\lceil\frac{\pi}{4} \sqrt{\frac{N}{M}}\right\rceil$.

End

