COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Discrete logarithm

Quantum Computation
 Phase estimation \rightarrow Discrete logarithm

Discrete logarithm problem

Given positive integers a, b, N such that $b=a^{s}(\bmod N)$ for some unknown s, find s.

- Question: What is the running time of the naive classical algorithm?

Quantum Computation
 Phase estimation \rightarrow Discrete logarithm

Discrete logarithm problem

Given positive integers a, b, N such that $b=a^{s}(\bmod N)$ for some unknown s, find s.

- Question: What is the running time of the naive classical algorithm? $\Omega(N)$

Quantum Computation
 Phase estimation \rightarrow Discrete logarithm

Discrete logarithm problem

Given positive integers a, b, N such that $b=a^{s}(\bmod N)$ for some unknown s, find s.

- Consider a bi-variate function $f\left(x_{1}, x_{2}\right)=a^{5 x_{1}+x_{2}}(\bmod N)$.
- Claim 1: f is a periodic function with period $(\ell,-\ell s)$ for any integer ℓ.
- So it may be possible for us to pull out s using some of the previous ideas developed.
- Question: How does discovering s for the above function help us in solving the discrete logarithm problem?

Quantum Computation
 Phase estimation \rightarrow Discrete logarithm

Discrete logarithm problem

Given positive integers a, b, N such that $b=a^{s}(\bmod N)$ for some unknown s, find s.

- Consider a bi-variate function $f\left(x_{1}, x_{2}\right)=a^{5 x_{1}+x_{2}}(\bmod N)$.
- Claim 1: f is a periodic function with period $(\ell,-\ell s)$ for any integer ℓ.
- So it may be possible for us to pull out s using some of the previous ideas developed.
- Question: How does discovering s for the above function help us in solving the discrete logarithm problem?
- Main idea: $f\left(x_{1}, x_{2}\right) \equiv b^{x_{1}} a^{x_{2}}(\bmod N)$.

Quantum Computation

Phase estimation \rightarrow Discrete logarithm

Bi-variate period

Let f be a function such that $f\left(x_{1}, x_{2}\right)=a^{s x_{1}+x_{2}}(\bmod N)$ and let r be the order of a modulo N. Let U be a unitary operator that performs the transformation: $U\left|x_{1}\right\rangle\left|x_{2}\right\rangle|y\rangle \rightarrow\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|y \oplus f\left(x_{1}, x_{2}\right)\right\rangle$. Find s.

Discrete logarithm

1. $|0\rangle|0\rangle|0\rangle$
(Initial state)
2. $\rightarrow \frac{1}{2^{t}} \sum_{x_{1}=0}^{2^{t}-1} \sum_{x_{2}=0}^{2^{t}-1}\left|x_{1}\right\rangle\left|x_{2}\right\rangle|0\rangle$
(Create superposition)
3. $\rightarrow \frac{1}{2^{t}} \sum_{x_{1}=0}^{2^{t}=1} \sum_{x_{2}=0}^{2^{t}-1}\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|f\left(x_{1}, x_{2}\right)\right\rangle$
(Apply U)

$$
=\frac{1}{\sqrt{r} 2^{t}} \sum_{\ell_{2}=0}^{r-1} \sum_{x_{1}=0}^{2^{t}-1} \sum_{x_{2}=0}^{2^{t}-1} e^{(2 \pi i)^{\frac{s \ell_{2} x_{1}+\ell_{2} x_{2}}{r}}}\left|x_{1}\right\rangle\left|x_{2}\right\rangle\left|\hat{f}\left(s \ell_{2}, \ell_{2}\right)\right\rangle
$$

$=\frac{1}{\sqrt{r} 2^{t}} \sum_{\ell_{2}=0}^{r-1}\left[\sum_{x_{1}=0}^{2^{t}-1} e^{(2 \pi i)^{s \ell_{2} x_{1}} r}\left|x_{1}\right\rangle\right]\left[\sum_{x_{2}=0}^{2^{t}-1} e^{(2 \pi i) \frac{\ell_{2} x_{2}}{r}}\left|x_{2}\right\rangle\right]\left|\hat{f}\left(s \ell_{2}, \ell_{2}\right)\right\rangle$
4. $\rightarrow \frac{1}{\sqrt{r}} \sum_{\ell_{2}=0}^{r-1}\left|\widetilde{\left(\frac{s \ell_{2}}{r}\right)}\right\rangle\left|\widetilde{\left(\frac{\ell_{2}}{r}\right)}\right\rangle\left|\hat{f}\left(s \ell_{2}, \ell_{2}\right)\right\rangle \quad$ (Apply invFT to register 1,2)
5. $\rightarrow\left(\widetilde{\left(\frac{s \ell_{2}}{r}\right)}, \widetilde{\left(\frac{\ell_{2}}{r}\right)}\right)$
(Measure register 1, 2)
6. $\rightarrow s$
(Use continued fractions algorithm)

- Claim: Let $\left|\hat{f}\left(\ell_{1}, \ell_{2}\right)\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} e^{-(2 \pi i) \frac{\ell_{2 j}}{r}}|f(0, j)\rangle$. Then

$$
\left|f\left(x_{1}, x_{2}\right)\right\rangle=\frac{1}{\sqrt{r}} \sum_{\ell_{2}=0}^{r-1} e^{(2 \pi i) \frac{s \ell_{2} x_{1}+\ell_{2} x_{2}}{r}}\left|\hat{f}\left(s \ell_{2}, \ell_{2}\right)\right\rangle .
$$

Quantum Computation: Hidden Subgroup Problem (HSG)

Quantum Computation
 Hidden Subgroup Problem (HSG)

- The algorithms for order-finding, factoring, discrete logarithm, period-finding follow the same general pattern.
- It would be useful if we could extract the main essence and define a general problem that can be solved using these ideas.

Hidden Subgroup Problem (HSG)

Given a group G and a function $f: G \rightarrow X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

Quantum Computation
 Hidden Subgroup Problem (HSG)

- The algorithms for order-finding, factoring, discrete logarithm, period-finding follow the same general pattern.
- It would be useful if we could extract the main essence and define a general problem that can be solved using these ideas.

Hidden Subgroup Problem (HSG)

Given a group G and a function $f: G \rightarrow X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

- Question: Can order-finding, period finding etc. be seen as just a special case of the HSG problem?

Quantum Computation

Hidden Subgroup Problem (HSG)

Hidden Subgroup Problem (HSG)

Given a group G and a function $f: G \rightarrow X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

- Question: Can order-finding, period finding etc. be seen as just a special case of the HSG problem?

Name	\mathbf{G}	\mathbf{X}	\mathbf{H}	\mathbf{f}
Simon	$\left(\{0,1\}^{n}, \oplus\right)$	$\{0,1\}^{n}$	$\{0, s\}$	$f(x \oplus s)=f(x)$
Order	$\left(\mathbb{Z}_{N},+\right)$	a^{j}	$\{0, r, 2 r, \ldots\}$	$f(x)=a^{x}$
finding		$j \in \mathbb{Z}_{r}$	$r \in G$	$f(x+r)=f(x)$
		$a^{r}=1$		

Quantum Computation
 Hidden Subgroup Problem (HSG)

Hidden Subgroup Problem (HSG)

Given a group G and a function $f: G \rightarrow X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

- Question: How does a Quantum computer solve the hidden subgroup problem?

Quantum algorithm for HSG

- Create uniform superposition $\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|f(g)\rangle$.
- Measure the second register to create a uniform superposition over a coset of $H: \frac{1}{\sqrt{H}} \sum_{h \in H}|h+k\rangle$.
- Apply Fourier transform
- Measure and extract generating set of the subgroup H.

Quantum Computation
 Hidden Subgroup Problem (HSG)

Hidden Subgroup Problem (HSG)

Given a group G and a function $f: G \rightarrow X$ with the promise that there is a subgroup $H \subseteq G$ such that f assigns a unique value to each coset of H. Find H.

- Question: How does a Quantum computer solve the hidden subgroup problem?

Quantum algorithm for HSG

- Create uniform superposition $\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle|f(g)\rangle$.
- Measure the second register to create a uniform superposition over a coset of $H: \frac{1}{\sqrt{H}} \sum_{h \in H}|h+k\rangle$.
- Apply Fourier transform
- Measure and extract generating set of the subgroup H.
- Question: How does Fourier transform help?
- Shift-invariance property: If $\sum_{h \in H} \alpha_{h}|h\rangle \rightarrow \sum_{g \in G} \tilde{\alpha}_{g}|g\rangle$, then

$$
\sum_{h \in H} \alpha_{h}|h+k\rangle \rightarrow \sum_{g \in G} e^{(2 \pi i) \frac{g_{k}}{\mid \sigma}} \tilde{\alpha}_{g}|g\rangle .
$$

Quantum Search Algorithms

Quantum Search Algorithms
 \section*{The oracle}

Search problem

Let $N=2^{n}$ and let $f:\{0, \ldots, N-1\} \rightarrow\{0,1\}$ be a function that has $1 \leq M \leq N$ solutions. That is, there are M values for which f evaluates to 1 . Find one of the solutions.

- Question: What is the running time for the classical solution?

Quantum Search Algorithms

The oracle

Search problem

Let $N=2^{n}$ and let $f:\{0, \ldots, N-1\} \rightarrow\{0,1\}$ be a function that has $1 \leq M \leq N$ solutions. That is, there are M values for which f evaluates to 1 . Find one of the solutions.

- Question: What is the running time for the classical solution? O(N)

Quantum Search Algorithms
 \section*{The oracle}

Search problem

Let $N=2^{n}$ and let $f:\{0, \ldots, N-1\} \rightarrow\{0,1\}$ be a function that has $1 \leq M \leq N$ solutions. That is, there are M values for which f evaluates to 1 . Find one of the solutions.

- Let \mathcal{O} be a quantum oracle with the following behaviour:

$$
|x\rangle|q\rangle \xrightarrow{\mathcal{O}}|x\rangle|q \oplus f(x)\rangle .
$$

- Claim 1: $|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \xrightarrow{\mathcal{O}}(-1)^{f(x)}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$
- We will always use the state $|-\rangle$ as the second register in the discussion. So, we may as well describe the behaviour of the oracle \mathcal{O} in short as:

$$
|x\rangle \xrightarrow{\mathcal{O}}(-1)^{f(x)}|x\rangle .
$$

- Claim 2: There is a quantum algorithm that applies the search oracle $\mathcal{O}, O\left(\sqrt{\frac{N}{M}}\right)$ times in order to obtain a solution.

Quantum Search Algorithms

The Grover operator

- Here is the schematic circuit for quantum search:

- Where G, called the Grover operator or Grover iteration, is:

Quantum Search Algorithms

The Grover operator

- Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2|0\rangle\langle 0|-I)$.

Quantum Search Algorithms

The Grover operator

- Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2|0\rangle\langle 0|-I)$.
- Let $|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle\langle 0|-I) H^{\oplus n}$, may be written as $2|\psi\rangle\langle\psi|-I$.

Quantum Search Algorithms

The Grover operator

- Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2|0\rangle\langle 0|-I)$.
- Let $|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle\langle 0|-I) H^{\oplus n}$, may be written as $2|\psi\rangle\langle\psi|-I$.
- The Grover operator G can then be written as $G=(2|\psi\rangle\langle\psi|-I) \mathcal{O}$.

Quantum Search Algorithms

The Grover operator

- Where G, called the Grover operator or Grover iteration, is:

- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is $(2|0\rangle\langle 0|-I)$.
- Let $|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle$.
- Exercise: The operation after the oracle call in the Grover operator, that is $H^{\oplus n}(2|0\rangle\langle 0|-I) H^{\oplus n}$, may be written as $2|\psi\rangle\langle\psi|-1$.
- The Grover operator G can then be written as $G=(2|\psi\rangle\langle\psi|-I) \mathcal{O}$.
- Exercise: Show that the operation $(2|\psi\rangle\langle\psi|-I)$ applied to a general state $\sum_{k} \alpha_{k}|k\rangle$ gives $\sum_{k}\left(-\alpha_{k}+2\langle\alpha\rangle\right)|k\rangle$.

Quantum Search Algorithms

The Grover operator

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?

Quantum Search Algorithms

Geometric visualization

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?
- Let

$$
\begin{aligned}
|\alpha\rangle & =\frac{1}{\sqrt{N-M}} \sum_{x \text { s.t. } f(x)=0}|x\rangle, \\
|\beta\rangle & =\frac{1}{\sqrt{M}} \sum_{x \text { s.t. } f(x)=1}|x\rangle .
\end{aligned}
$$

Quantum Search Algorithms

Geometric visualization

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?
- Let

$$
\begin{aligned}
|\alpha\rangle & =\frac{1}{\sqrt{N-M}} \sum_{x \text { s.t. } f(x)=0}|x\rangle, \\
|\beta\rangle & =\frac{1}{\sqrt{M}} \sum_{x \text { s.t. } f(x)=1}|x\rangle
\end{aligned}
$$

- Observation: $|\psi\rangle=\sqrt{\frac{N-M}{N}}|\alpha\rangle+\sqrt{\frac{M}{N}}|\beta\rangle$.
- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- Claim 1: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- Claim 2 The effect of $(2|\psi\rangle\langle\psi|-I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

Quantum Search Algorithms

Geometric visualization

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why $O(\sqrt{N})$ repetitions?
- Let $|\alpha\rangle=\frac{1}{\sqrt{N-M}} \sum_{x \text { s.t. }} f(x)=0|x\rangle$, and $|\beta\rangle=\frac{1}{\sqrt{M}} \sum_{x \text { s.t. } f(x)=1}|x\rangle$.
- Observation: $|\psi\rangle=\sqrt{\frac{N-M}{N}}|\alpha\rangle+\sqrt{\frac{M}{N}}|\beta\rangle$.
- Consider the plane defined by the vectors $|\alpha\rangle$ and $|\beta\rangle$.
- Claim 1: The effect of \mathcal{O} on a vector on the plane is reflection about the vector $|\alpha\rangle$.
- Claim 2 The effect of $(2|\psi\rangle\langle\psi|-I)$ on a vector on the plane is reflection about the vector $|\psi\rangle$.

End

