
COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation: Order finding

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

We work with |1〉 as the first register since 1√
r

∑r−1
s=0 |us〉 = |1〉.

So, we will argue that for each 0 ≤ s ≤ r − 1, we will obtain an
estimate of ϕ ≈ s

r accurate to 2L + 1 bits with probability at least
(1−ε)

r .

Question: How do we extract r from this? Continued fractions

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Theorem: Suppose x ≥ 1 is a rational number. Then x has a
representation as a continued fraction, x = [a0, ..., aN]. This may
be found by the continued fraction algorithm.
Exercise: Find the continued fraction expansion of 31

13 .
Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?
Theorem: Let a0, ..., aN be a sequence of positive numbers. Then
[a0, ..., an] = pn

qn
, where pn and qn are real numbers defined

inductively by p0 ≡ 0, q0 ≡ 1, p1 ≡ 1 + a0a1, q1 ≡ a1, and for
2 ≤ n ≤ N,

pn ≡ anpn−1 + pn−2

qn ≡ anqn−1 + qn−2

In the case when aj are positive integers, so too are pj and qj and
moreover qnpn−1 − pnqn−1 = (−1)n for n ≥ 1 which implies that
gcd(pn, qn) = 1.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?

Let [a0, ..., aN] = p
q ≥ 1 with L = dlog pe and let pn, qn be as

defined in the theorem.
Observation: pn, qn are increasing with pn ≥ 2pn−2, qn ≥ 2qn−2.

Theorem: Let a0, ..., aN be a sequence of positive numbers. Then
[a0, ..., an] = pn

qn
, where pn and qn are real numbers defined

inductively by p0 ≡ 0, q0 ≡ 1, p1 ≡ 1 + a0a1, q1 ≡ a1, and for
2 ≤ n ≤ N,

pn ≡ anpn−1 + pn−2

qn ≡ anqn−1 + qn−2

In the case when aj are positive integers, so too are pj and qj and
moreover qnpn−1 − pnqn−1 = (−1)n for n ≥ 1 which implies that
gcd(pn, qn) = 1.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?

Let [a0, ..., aN] = p
q ≥ 1 with L = dlog pe and let pn, qn be as

defined in the theorem.
Observation: pn, qn are increasing with pn ≥ 2pn−2, qn ≥ 2qn−2.
This implies that 2bN/2c ≤ q ≤ p. So, N = O(L) and the running
time of algorithm is O(L3).

Theorem: Let a0, ..., aN be a sequence of positive numbers. Then
[a0, ..., an] = pn

qn
, where pn and qn are real numbers defined

inductively by p0 ≡ 0, q0 ≡ 1, p1 ≡ 1 + a0a1, q1 ≡ a1, and for
2 ≤ n ≤ N,

pn ≡ anpn−1 + pn−2; qn ≡ anqn−1 + qn−2

In the case when aj are positive integers, so too are pj and qj and
moreover qnpn−1 − pnqn−1 = (−1)n for n ≥ 1 which implies that
gcd(pn, qn) = 1.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Theorem: Let x be a rational number and suppose p
q is a rational

number such that |pq − x | ≤ 1
2q2

. Then p
q is a convergent of the

continued fraction for x .

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Theorem

Let x be a rational number and suppose p
q is a rational number such

that |pq − x | ≤ 1
2q2

. Then p
q is a convergent of the continued fraction

for x .

Proof sketch

Let p
q = [a0, ..., an] and let pj , qj as defined in the previous

theorem so that p
q = pn

qn
.

Define δ by the equation:

x ≡ pn
qn

+
δ

2q2n
, so that |δ| ≤ 1.

Define λ by

λ ≡ 2

(
qnpn−1 − pnqn−1

δ

)
− qn−1

qn

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Theorem

Let x be a rational number and suppose p
q is a rational number such

that |pq − x | ≤ 1
2q2

. Then p
q is a convergent of the continued fraction

for x .

Proof sketch

Let p
q = [a0, ..., an] and let pj , qj as defined in the previous

theorem so that p
q = pn

qn
.

Define δ by the equation: x ≡ pn
qn

+ δ
2q2n
, so that |δ| ≤ 1.

Define λ by λ ≡ 2
(
qnpn−1−pnqn−1

δ

)
− qn−1

qn

Claim 1: x = λpn+pn−1

λqn+qn−1
and therefore x = [a0, ..., an, λ].

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Theorem

Let x be a rational number and suppose p
q is a rational number such

that |pq − x | ≤ 1
2q2

. Then p
q is a convergent of the continued fraction

for x .

Proof sketch

Let p
q = [a0, ..., an] and let pj , qj as defined in the previous

theorem so that p
q = pn

qn
.

Define δ by the equation: x ≡ pn
qn

+ δ
2q2n
, so that |δ| ≤ 1.

Define λ by λ ≡ 2
(
qnpn−1−pnqn−1

δ

)
− qn−1

qn

Claim 1: x = λpn+pn−1

λqn+qn−1
and therefore x = [a0, ..., an, λ].

Claim 2: λ = 2
δ −

qn−1

qn
> 2− 1 > 1 which further implies that

λ = [b0, ..., bm] and x = [a0, ..., an, b0, ..., bm].
This completes the proof of the theorem.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

We work with |1〉 as the first register since 1√
r

∑r−1
s=0 |us〉 = |1〉.

So, we will argue that for each 0 ≤ s ≤ r − 1, we will obtain an
estimate of ϕ ≈ s

r accurate to 2L + 1 bits with probability at least
(1−ε)

r .

Question: How do we extract r from this? Continued fractions
Question: Are we guaranteed to get r using continued fractions?
What could go wrong?

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

We obtain ϕ ≈ s
r for some 0 ≤ s ≤ r − 1 and then we use

continued fractions to obtain s ′, r ′ such that s ′/r ′ = s/r .
The problem is r ′ may not equal r . One such case is when s = 0.
This, however, is a small probability event.
Claim: Suppose we repeat twice and obtain s ′1, r

′
1 and s ′2, r

′
2. If s1

and s2 are co-prime, then r = lcm(r ′1, r
′
2).

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

We obtain ϕ ≈ s
r for some 0 ≤ s ≤ r − 1 and then we use

continued fractions to obtain s ′, r ′ such that s ′/r ′ = s/r .
The problem is r ′ may not equal r . One such case is when s = 0.
This, however, is a small probability event.
Claim: Suppose we repeat twice and obtain r ′1 and r ′2
corresponding to s1, s2. If s1 and s2 are co-prime, then
r = lcm(r ′1, r

′
2).

Claim: Pr[s1 and s2 are co-prime] ≥ 1/4.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Quantum Order-finding

1. |0〉 |1〉 (Initial state)

2. → 1
2t/2

∑2t−1
j=0 |j〉 |1〉 (Create superposition)

3. → 1
2t/2

∑2t−1
j=0 |j〉

∣∣x j (mod N)
〉

(Apply Ux ,N)

≈ 1√
r2t/2

∑r−1
s=0

∑2t−1
j=0 e(2πi)

sj
r |j〉 |us〉

4. → 1√
r

∑r−1
s=0

∣∣∣ ˜(s/r)
〉
|us〉 (Apply inverse FT to 1st register)

5. → ˜(s/r) (Measure first register)
6. → r (Use continued fractions algorithm)

What is the size of the circuit that computes the order with high
probability?

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Quantum Order-finding

1. |0〉 |1〉 (Initial state)

2. → 1
2t/2

∑2t−1
j=0 |j〉 |1〉 (Create superposition)

3. → 1
2t/2

∑2t−1
j=0 |j〉

∣∣x j (mod N)
〉

(Apply Ux ,N)

≈ 1√
r2t/2

∑r−1
s=0

∑2t−1
j=0 e(2πi)

sj
r |j〉 |us〉

4. → 1√
r

∑r−1
s=0

∣∣∣ ˜(s/r)
〉
|us〉 (Apply inverse FT to 1st register)

5. → ˜(s/r) (Measure first register)
6. → r (Use continued fractions algorithm)

What is the size of the circuit that computes the order with high
probability? O(L3)

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation: Factoring

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Phase estimation → Order finding → Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

We will solve the factoring problem by reduction to the order
finding problem.
Theorem 1: Suppose N is an L bit composite number, and x is a
non-trivial solution to the equation x2 = 1 (mod N) in the range
1 ≤ x ≤ N, that is, neither x = 1 (mod N) nor
x = −1 (mod N). Then at least one of gcd(x − 1,N) and
gcd(x + 1,N) is a non-trivial factor of N that can be computed
using O(L3) operations.
Theorem 2: Suppose N = pα1

1 ...pαm
m is the prime factorisation of

an odd composite positive integer. Let x be an integer chosen
uniformly at random, subject to the requirement that
1 ≤ x ≤ N − 1 and x is co-prime to N. Let r be the order of x
modulo N. Then

Pr[r is even and x r/2 6= −1 (mod N)] ≥ 1− 1

2m
.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

Quantum Computation
Phase estimation → Order finding → Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

Quantum Factoring Algorithm

1. If N is even, return 2 as a factor.
2. Determine if N = ab for integers a, b ≥ 2 and if so, return a.
3. Randomly choose 1 ≤ x ≤ N − 1. If gcd(x ,N) > 1, then return
gcd(x ,N).
4. Use the Quantum order-finding algorithm to find the order r of x
modulo N.
5. If r is even and x r/2 6= −1 (mod N), then compute
p = gcd(x r/2 − 1,N) and q = gcd(x r/2 + 1,N). If either p or q is a
non-trivial factor of N, then return that factor else return “Failure”.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

End

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information

