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Quantum Computation

Phase estimation — Order-finding

Order finding
Given co-prime integers N > x > 0, compute the order of x modulo N.

o Consider the operator U that has the following behaviour:

y) = |xy (mod N)) fo<y<N-1
) ifN<y<2t-1

o Exercise summary: Let |us) = %Z;;% e (@ |k (mod N))
be an eigenstate of U. Then U |us) = @7 |u)

o Main idea for determining r: We will use phase estimation to get
an estimate on * and then obtain r from it.

o How do we implement controlled U?? Modular exponentiation
o How do we prepare an eigenstate |us)?
o We work with |1) as the first register since % S us) = [1).

o So, we will argue that for each 0 < s < r — 1, we will obtain an
estimate of ¢ ~ £ accurate to 2L + 1 bits with probability at least
(=)

.

o Question: How do we extract r from this? Continued fractions
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Quantum Computation
Digression: Continued fractions

Continued fraction
A finite simple continued fraction is defined by a collection of positive

integers ag, ..., ay:

1
[a0, .-, an] = a0 + ———F—

a — T
1+a2+ T

anN

The n'h convergent (0 < n < N) of this continued fraction is defined
to be [ag, ..., an].

o Theorem: Suppose x > 1 is a rational number. Then x has a
representation as a continued fraction, x = [ao, ..., ay]. This may
be found by the continued fraction algorithm.

o Exercise: Find the continued fraction expansion of %

o Question: What is the running time for the continued fractions
algorithm for any given rational number ’;’I > 17
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Quantum Computation

Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers ag, ..., an:

1
[a0, ..., an] = a0 + 31+71
a+—1L
+ﬁ

The n'" convergent (0 < n < N) of this continued fraction is defined
to be [ag, ..., an].

o Question: What is the running time for the continued fractions
algorithm for any given rational number % >17

o Theorem: Let ag, ..., an be a sequence of positive numbers. Then
[a0, ...y an] = %, where p, and g, are real numbers defined
inductively by po =0, qo =1, p1 =1+ apa1, g1 = a1, and for
2<n<N,

anPn—1+ Pn—2

anqn—1+ qn—2

Pn
n

In the case when a; are positive integers, so too are p; and g; and
moreover ¢nPpn—1 — PnGn-1 = (—1)" for n > 1 which implies that
ged(pn, qn) = 1.
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Quantum Computation

Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers ag, ..., an:

_ 1
[ag,...,a,\/]:aoJrial+ T
at—L
+ﬁ

The n'" convergent (0 < n < N) of this continued fraction is defined
to be [ag, ..., an)].

o Question: What is the running time for the continued fractions
algorithm for any given rational number % >17?
o Let [ag,...,an] = § > 1 with L = [log p] and let p,, g, be as
defined in the theorem.
o Observation: p,, g, are increasing with p, > 2p,_2, qn > 2q,—2.
o Theorem: Let ag, ..., ay be a sequence of positive numbers. Then
lao, .., an] = %, where p, and g, are real numbers defined
inductively by po =0, go = 1, p1 = 1 + apa1, g1 = a1, and for
2<n<N,
Pn = anPp-1+ Pn-2
Gn = anqn-1+qn-2

In the case when a; are positive integers, so too are p; and g; and
moreover qnPp—1 — PnGn—1 = (—1)" for n > 1 which implies that
ged(pn, qn) = 1.
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Quantum Computation

Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers ap, ..., an:

1
[a0,..van] = a0 + ———F—
a + T
T

ey

The n™ convergent (0 < n < N) of this continued fraction is defined
to be [ag, ..., an].

o Question: What is the running time for the continued fractions
algorithm for any given rational number g >17
o Let [ag,...,an] = % > 1 with L = [log p] and let p,, g, be as
defined in the theorem.
o Observation: p,, g, are increasing with p, > 2p,_2,qn > 2qp_2.
o This implies that 2LN/2) < ¢ < p. So, N = O(L) and the running
time of algorithm is O(L3).

o Theorem: Let ag, ..., ay be a sequence of positive numbers. Then
lao, -, an] = %, where p, and g, are real numbers defined
inductively by pp =0, go =1, p1 = 1+ apa1, g1 = a1, and for
2<n<N,

Pn = anPn-1+ Pn-2;  qn = anqn-1+ qn-2

In the case when a; are positive integers, so too are p; and g; and
moreover gnpn—1 — PnGn—1 = (—1)" for n > 1 which implies that
ged(pn, gn) = 1.
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Quantum Computation
Digression: Continued fractions
A finite simple continued fraction is defined by a collection of positive

;dN-
1

integers ap, ...
l[ao,-.,an] = a0 + ————
at 1
2+ T

The n'h convergent (0 < n < N) of this continued fraction is defined

to be [ag, ..., an].
o Theorem: Let x be a rational number and suppose g is a rational

number such that |2 — x| < %g. Then 2 is a convergent of the

continued fraction for x.
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Quantum Computation

Digression: Continued fractions

Theorem

Let x be a rational number and suppose % is a rational number such
that | —x| < —5 Then £is a convergent of the continued fraction
for x.

Proof sketch

o Let § = [ao, ..., an] and let p;, g; as defined in the previous
theorem so that 2 = %.
o Define § by the equation:

)
(i so that |J] < 1.

X=— 22,

o Define \ by

A= 2 <qnpn—1 - ann—1> _ Gn-1
9 An
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Quantum Computation

Digression: Continued fractions

Theorem
Let x be a rational number and suppose 5 is a rational number such

that |B —x| < 52 Then £ is a convergent of the continued fraction
for x.

Proof sketch

o Let ’5’ = [ao, ..., an] and let pj, g; as defined in the previous

theorem so that E = %.

o Define § by the equatlon X = p” + —;,so that ] < 1.

° Define/\by/\z2<w)_%

and therefore x = [ao, ..., an, A].

APn+pPn—1
AGn+tgn—1

o Claim 1: x =
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Quantum Computation

Digression: Continued fractions

Theorem

Let x be a rational number and suppose § is a rational number such

that |B —x| < 52 Then £ is a convergent of the continued fraction
for x.

V.

Proof sketch

o Let ’5’ = [ao, ..., an] and let pj, q; as defined in the previous

theorem so that B = %

o Define § by the equatlon X = p" + —g,so that 6] < 1.

° Define/\by/\z2<w) ==
o Claim 1: x = % and therefore x = [ag, ..., an, A].
° CIalm 2: A =% — %= >2—1>1 which further implies that

= [bo, ..., bm] and x = [ao, ..., an, bo, .-, bm].
° This completes the proof of the theorem.
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Quantum Computation

Phase estimation — Order-finding

Order finding
Given co-prime integers N > x > 0, compute the order of x modulo N.

o Consider the operator U that has the following behaviour:

Uly) = |xy (mod N)) ifo<y<nN-1
Y= N <y<2al-1

o Exercise summary: Let |us) = \[Zr 1 g=(2mi)¥ + |xk (mod N))

be an eigenstate of U. Then U|us) = e@®™)7 |uy)
o Main idea for determining r: We will use phase estimation to get
an estimate on 7 and then obtain r from it.

o How do we implement controlled U?? Modular exponentiation
o How do we prepare an eigenstate |us)?
o We work with |1) as the first register since —=

=3 Jus) = [1).

o So, we will argue that for each 0 < s < r — 1, we will obtain an
estimate of p &~ ? accurate to 2L + 1 bits with probability at least
(=g

.
o Question: How do we extract r from this? Continued fractions

o Question: Are we guaranteed to get r using continued fractions?
What could go wrong?
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Quantum Computation

Phase estimation — Order-finding

Order finding
Given co-prime integers N > x > 0, compute the order of x modulo N.

o We obtain ¢ ~ f for some 0 < s < r — 1 and then we use
continued fractions to obtain s, r’ such that s’/r' = s/r.

o The problem is r' may not equal r. One such case is when s = 0.
This, however, is a small probability event.

o Claim: Suppose we repeat twice and obtain si, r; and s, . If 51

and s, are co-prime, then r = lem(r{, r3).
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Quantum Computation

Phase estimation — Order-finding

Order finding
Given co-prime integers N > x > 0, compute the order of x modulo N.

o We obtain ¢ ~ f for some 0 < s < r — 1 and then we use
continued fractions to obtain s, r’ such that s'/r' = s/r.

o The problem is r' may not equal r. One such case is when s = 0.
This, however, is a small probability event.

o Claim: Suppose we repeat twice and obtain r{ and r}
corresponding to si, sp. If s; and sp are co-prime, then
r=lem(ry, ).

o Claim: Pr[s; and s, are co-prime| > 1/4.
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Quantum Computation
Phase estimation — Order-finding

Order finding
Given co-prime integers N > x > 0, compute the order of x modulo N

Quantum Order-finding

1. |0) 1) (Initial state)

2. — 2}/2 Zf 51 ) 1) (Create superposition)

3. » 55 ZJ 1) IXJ (mod N)) (Apply Us,n)
~ e s Vg €C™E 1)) |u)

4. — W ES:O ‘(s/r)> |us) (Apply inverse FT to 1% register)

5. — (s/r) (Measure first register)

6. = r (Use continued fractions algorithm)

o What is the size of the circuit that computes the order with high
probability?
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Quantum Computation
Phase estimation — Order-finding

Order finding
Given co-prime integers N > x > 0, compute the order of x modulo N

Quantum Order-finding

1. |0) 1) (Initial state)

2. — 2}/2 Zf 51 ) 1) (Create superposition)

3. » 55 ZJ 1) IXJ (mod N)) (Apply Us,n)
~ e s Vg €C™E 1)) |u)

4. — W ES:O ‘(s/r)> |us) (Apply inverse FT to 1% register)

5. — (s/r) (Measure first register)

6. —r (Use continued fractions algorithm)

o What is the size of the circuit that computes the order with high
probability? O(L®)
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Quantum Computation: Factoring
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Quantum Computation
Phase estimation — Order finding — Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

o We will solve the factoring problem by reduction to the order
finding problem.

o Theorem 1: Suppose N is an L bit composite number, and x is a
non-trivial solution to the equation x> = 1 (mod N) in the range
1< x < N, that is, neither x =1 (mod N) nor
x = —1 (mod N). Then at least one of gcd(x — 1, N) and
gcd(x + 1, N) is a non-trivial factor of N that can be computed
using O(L3) operations.

o Theorem 2: Suppose N = pi*...p%m is the prime factorisation of
an odd composite positive integer. Let x be an integer chosen
uniformly at random, subject to the requirement that
1< x<N-—1and x is co-prime to N. Let r be the order of x
modulo N. Then

1
Pr[r is even and x/? # —1 (mod N)] > 1 — om
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Quantum Computation

Phase estimation — Order finding — Factoring

Factoring
Given a positive composite integer IV, output a non-trivial factor of N.

Quantum Factoring Algorithm

1. If N is even, return 2 as a factor.

2. Determine if N = aP for integers a, b > 2 and if so, return a.

3. Randomly choose 1 < x < N — 1. If ged(x, N) > 1, then return
ged(x, N).

4. Use the Quantum order-finding algorithm to find the order r of x
modulo M.

5. If r is even and x'/2 # —1 (mod N), then compute

p = gcd(x"/? —1,N) and g = ged(x'/?2 4+ 1, N). If either p or g is a
non-trivial factor of N, then return that factor else return “Failure”.
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End
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