COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Phase estimation

Quantum Computation
 Phase estimation

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2 \pi i \varphi}$. The goal is to estimate φ.

- We will use the assumption that there are black-boxes that:
- prepare the state $|u\rangle$, and
- perform the controlled- $U^{2^{j}}$ operation.
- We will describe a phase estimation procedure that uses two registers:
- A t-qubit register initially in state $|0 . . .0\rangle$ (the value of t to be decided later), and
- a register that begins in the state $|u\rangle$.

Quantum Computation

 Phase estimation

 Phase estimation}
Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2 \pi i \varphi}$. The goal is to estimate φ.

- Claim 1: The final state of the first register in the circuit below is given by:

Quantum Computation
 Phase estimation

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2 \pi i \varphi}$. The goal is to estimate φ.

- Claim 1: The final state of the first register in the circuit below is given by:

$$
\frac{1}{2^{t / 2}}\left(|0\rangle+e^{(2 \pi i) 2^{t-1} \varphi}|1\rangle\right)\left(|0\rangle+e^{(2 \pi i) 2^{t-2} \varphi}|1\rangle\right) \ldots\left(|0\rangle+e^{(2 \pi i) 2^{0} \varphi}|1\rangle\right)=\frac{1}{2^{t / 2}} \sum_{k=0}^{2^{t}-1} e^{(2 \pi i) \varphi k}|k\rangle
$$

- Question: Suppose φ may be expressed exactly as $\varphi=\left[0 \cdot \varphi_{1} \varphi_{2} \ldots \varphi_{t}\right]$. Suggest a way to retrieve the value of φ ?

Quantum Computation
 Phase estimation

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2 \pi i \varphi}$. The goal is to estimate φ.

- Claim 1: The final state of the first register in the circuit below is given by:

$$
\frac{1}{2^{t / 2}}\left(|0\rangle+e^{(2 \pi i) 2^{t-1} \varphi}|1\rangle\right)\left(|0\rangle+e^{(2 \pi i) 2^{t-2} \varphi}|1\rangle\right) \cdots\left(|0\rangle+e^{(2 \pi i) 2^{0} \varphi}|1\rangle\right)=\frac{1}{2^{t / 2}} \sum_{k=0}^{2^{t}-1} e^{(2 \pi i) \varphi k}|k\rangle
$$

- Question: Suppose φ may be expressed exactly as $\bar{\varphi}=\left[0 \cdot \varphi_{1} \varphi_{2} \ldots \varphi_{t}\right]$. Suggest a way to retrieve the value of φ ?
- Taking the inverse-fourier transform and measuring the value of the first register in the computational basis gives φ.
- In general, we will show that the inverse Fourier transform has the following behaviour:

$$
\frac{1}{2^{t / 2}} \sum_{j=0}^{2^{t}-1} e^{(2 \pi i) \varphi j}|j\rangle|u\rangle \rightarrow|\tilde{\varphi}\rangle|u\rangle
$$

where $|\tilde{\varphi}\rangle$ denotes a state that is a good estimator for φ when measured.

Quantum Computation
 Phase estimation

- In general, we will show that the inverse Fourier transform has the following behaviour:

$$
\frac{1}{2^{t / 2}} \sum_{j=0}^{2^{t}-1} e^{(2 \pi i) \varphi j}|j\rangle|u\rangle \rightarrow|\tilde{\varphi}\rangle|u\rangle
$$

where $|\tilde{\varphi}\rangle$ denotes a state that is a good estimator for φ when measured.

Claim 2

It is sufficient to run the phase estimation technique with $t=n+\log \left(2+\frac{1}{2 \varepsilon}\right)$ in order to obtain φ accurate to n bits with probability at least $(1-\varepsilon)$.

Quantum Computation
 Phase estimation

Claim 2

It is sufficient to run the phase estimation technique with $t=n+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil$ in order to obtain φ accurate to n bits with probability at least $(1-\varepsilon)$.

Proof sketch

- Let $0 \leq b \leq 2^{t}-1$ be an integer such that $\frac{b}{2^{t}}=\left[0 \cdot b_{1} \ldots b_{t}\right]$ is the best t bit approximation to φ that is less than φ. Let $\delta=\varphi-\frac{b}{2^{t}}$ (which implies $0 \leq \delta \leq 2^{-t}$).
- Claim 2.1: Applying the inverse Fourier transform on the first register in state $\frac{1}{2^{t / 2}} \sum_{k=0}^{2^{t}-1} e^{(2 \pi i) \varphi k}|k\rangle$ ends in the following state:

$$
\frac{1}{2^{t}} \sum_{k, l=0}^{2^{t}-1} e^{\frac{-(2 \pi i) k l}{2^{t}}} e^{(2 \pi i) \varphi k}|I\rangle
$$

Quantum Computation
 \section*{Phase estimation}

Claim 2

It is sufficient to run the phase estimation technique with $t=n+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil$ in order to obtain φ accurate to n bits with probability at least $(1-\varepsilon)$.

Proof sketch

- Let $0 \leq b \leq 2^{t}-1$ be an integer such that $\frac{b}{2^{t}}=\left[0 \cdot b_{1} \ldots b_{t}\right]$ is the best t bit approximation to φ that is less than φ. Let $\delta=\varphi-\frac{b}{2^{t}}$ (which implies $0 \leq \delta \leq 2^{-t}$).
- Claim 2.1: Applying the inverse Fourier transform on the first register in state $\frac{1}{2^{t / 2}} \sum_{k=0}^{2^{t}-1} e^{(2 \pi i) \varphi k}|k\rangle$ ends in the following state: $\frac{1}{2^{t}} \sum_{k, l=0}^{2^{t}-1} e^{\frac{-(2 \pi i) k l}{2^{t}}} e^{(2 \pi i) \varphi k}|I\rangle$.
- Claim 2.2: Let α_{I} be the amplitude of $\left|(b+I) \bmod 2^{t}\right\rangle$. Then $\alpha_{I}=\frac{1}{2^{t}}\left(\frac{1-e^{(2 \pi i)\left(2^{t} \varphi-(b+l)\right)}}{1-e^{(2 \pi i)\left(\varphi-(b+l) / 2^{t}\right)}}\right)=\frac{1}{2^{t}}\left(\frac{1-e^{(2 \pi i)\left(2^{t} \delta-l\right)}}{1-e^{(2 \pi i)\left(\delta-I / 2^{t}\right)}}\right)$.

Quantum Computation
 Phase estimation

Claim 2

It is sufficient to run the phase estimation technique with $t=n+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil$ in order to obtain φ accurate to n bits with probability at least $(1-\varepsilon)$.

Proof sketch

- Let $0 \leq b \leq 2^{t}-1$ be an integer such that $\frac{b}{2^{t}}=\left[0 \cdot b_{1} \ldots b_{t}\right]$ is the best t bit approximation to φ that is less than φ. Let $\delta=\varphi-\frac{b}{2^{t}}$ (which implies $0 \leq \delta \leq 2^{-t}$).
- Claim 2.1: Applying the inverse Fourier transform on the first register in state $\frac{1}{2^{t / 2}} \sum_{k=0}^{2^{t}-1} e^{(2 \pi i) \varphi k}|k\rangle$ ends in the following state: $\frac{1}{2^{t}} \sum_{k, l=0}^{2^{t}-1} e^{\frac{-(2 \pi i) k l}{2^{t}}} e^{(2 \pi i) \varphi k}|l\rangle$.
- Claim 2.2: Let α_{I} be the amplitude of $\left|(b+I) \bmod 2^{t}\right\rangle$. Then $\alpha_{I}=\frac{1}{2^{t}}\left(\frac{1-e^{(2 \pi i)\left(2^{t} \varphi-(b+l)\right)}}{1-e^{(2 \pi i)\left(\varphi-(b+1) / 2^{t}\right)}}\right)=\frac{1}{2^{t}}\left(\frac{1-e^{(2 \pi i)\left(2^{t} \delta-1\right)}}{1-e^{(2 \pi i)\left(\delta-1 / 2^{t}\right)}}\right)$.
- Claim 2.3: Let e be the error parameter and let m be the outcome of the measurement. Then

$$
\operatorname{Pr}[|m-b|>e] \leq \frac{1}{2(e-1)}
$$

Quantum Computation
 Phase estimation

Claim 2

It is sufficient to run the phase estimation technique with $t=n+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil$ in order to obtain φ accurate to n bits with probability at least $(1-\varepsilon)$.

Proof sketch

- Let $0 \leq b \leq 2^{t}-1$ be an integer such that $\frac{b}{2^{t}}=\left[0 \cdot b_{1} \ldots b_{t}\right]$ is the best t bit approximation to φ that is less than φ. Let $\delta=\varphi-\frac{b}{2^{t}}$ (which implies $0 \leq \delta \leq 2^{-t}$).
- Claim 2.1: Applying the inverse Fourier transform on the first register in state $\frac{1}{2^{t / 2}} \sum_{k=0}^{2^{t}-1} e^{(2 \pi i) \varphi k}|k\rangle$ ends in the following state: $\frac{1}{2^{t}} \sum_{k, l=0}^{2^{t}-1} e^{\frac{-(2 \pi i) k}{2^{t}}} e^{(2 \pi i) \varphi k}|I\rangle$.
- Claim 2.2: Let α, be the amplitude of $\left|(b+l) \bmod 2^{t}\right\rangle$. Then $\alpha_{I}=\frac{1}{2^{t}}\left(\frac{1-e^{\left.(2 \pi i)()^{t} \varphi-(b+1)\right)}}{1-e^{(2 \pi i)\left(\varphi-(b+1) / 2^{t}\right)}}\right)=\frac{1}{2^{t}}\left(\frac{1-e^{(2 \pi i)\left(2^{t} \delta-1\right)}}{1-e^{(2 \pi i)\left(\delta-1 / 2^{t}\right)}}\right)$.
- Claim 2.3: Let e be the error parameter and let m be the outcome of the measurement. Then

$$
\operatorname{Pr}[|m-b|>e] \leq \frac{1}{2(e-1)}
$$

- The claim follows by setting $t=n+p$ and $\varepsilon=\frac{1}{2\left(2^{p}-1\right)}$.

Quantum Computation
 Phase estimation

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2 \pi i \varphi}$. The goal is to estimate φ.

- The phase estimation protocol works when the second register is set to the eigenstate $|u\rangle$. In general, this may not be feasible.
- Observation: Any general state $|\psi\rangle$ may be written in terms of the eigenstates of U as $\sum_{u} c_{u}|u\rangle$.
- Exercise: The phase estimation procedure takes state $(|0\rangle)\left(\sum_{u} c_{u}|u\rangle\right)$ to $\sum_{u} c_{u}\left|\tilde{\varphi}_{u}\right\rangle|u\rangle$. If $t=n+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil$, then the probability of measuring φ_{u} accurate to n bits at the end of the phase estimation procedure is at least $\left|c_{u}\right|^{2}(1-\varepsilon)$.

Quantum Computation
 Phase estimation

Phase estimation

Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2 \pi i \varphi}$. The goal is to estimate φ.

- Phase estimation enables us to design quantum algorithms for the order-finding and factoring problems.

Quantum Computation: Order finding

Quantum Computation
 Phase estimation \rightarrow Order-finding

- Given integers $N>x>0$ such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^{r}=1(\bmod N)$.
- Exercise: What is the order of 5 modulo 21 ?

Quantum Computation
 Phase estimation \rightarrow Order-finding

- Given integers $N>x>0$ such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^{r}=1(\bmod N)$.
- Exercise: What is the order of 5 modulo 21 ? 6

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Exercise: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N ?

Quantum Computation
 Phase estimation \rightarrow Order-finding

- Given integers $N>x>0$ such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^{r}=1(\bmod N)$.
- Exercise: What is the order of 5 modulo 21 ? 6

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Exercise: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N ? Yes
- Exercise: Is it an efficient algorithm?

Quantum Computation

- Given integers $N>x>0$ such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^{r}=1(\bmod N)$.
- Exercise: What is the order of 5 modulo 21 ? 6

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Exercise: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N ? Yes
- Exercise: Is it an efficient algorithm?
- Let $L=\lceil\log n\rceil$. The number of bits needed to specify the problem is $O(L)$. So, an efficient algorithm should have running time that is polynomial in L.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise: Show that U is unitary.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise: Show that U is unitary.
- Exercise: Show that the states defined by

$$
\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle
$$

are the eigenstates of U. Find the corresponding eigenvalues.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)_{r}^{s}}\left|u_{s}\right\rangle$

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)_{r}^{s}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.

Quantum Computation
 \section*{Phase estimation \rightarrow Order-finding}

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)^{\frac{s}{r}}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$?
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?

Quantum Computation

Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)^{\frac{s}{r}}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$? Modular exponentiation
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?

Quantum Computation

Phase estimation \rightarrow Order-finding

Modular exponentiation

Given $|z\rangle|y\rangle$, design a circuit that ends in the state $|z\rangle\left|x^{z} y(\bmod N)\right\rangle$.

- What we wanted to do was $|z\rangle|y\rangle \rightarrow|z\rangle U^{z_{t} 2^{t-1}} \ldots U^{z_{1} 2^{0}}|y\rangle$ but then this is the same as $|z\rangle\left|x^{z} y(\bmod N)\right\rangle$.
- Question: Suppose we work with the first register being of size $\overline{t=2 L+1}+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil=O(L)$ What would be the size of the circuit?

Quantum Computation

Phase estimation \rightarrow Order-finding

Modular exponentiation

Given $|z\rangle|y\rangle$, design a circuit that ends in the state $|z\rangle\left|x^{z} y(\bmod N)\right\rangle$.

- What we wanted to do was $|z\rangle|y\rangle \rightarrow|z\rangle U^{z_{t} 2^{t-1}} \ldots U^{z_{1} 2^{0}}|y\rangle$ but then this is the same as $|z\rangle\left|x^{z} y(\bmod N)\right\rangle$.
- Question: Suppose we work with the first register being of size $\overline{t=2 L+1}+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil=O(L)$. What would be the size of the circuit? $O\left(L^{3}\right)$

Quantum Computation

Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)^{\frac{s}{r}}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$? Modular exponentiation
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?
- We work with $|1\rangle$ as the first register since $\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle$.

Quantum Computation
 \section*{Phase estimation \rightarrow Order-finding}

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)^{\frac{s}{r}}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$? Modular exponentiation
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?
- We work with $|1\rangle$ as the first register since $\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle$.
- So, we will argue that for each $0 \leq s \leq r-1$, we will obtain an estimate of $\varphi \approx \frac{s}{r}$ accurate to $2 L+1$ bits with probability at least $\frac{(1-\varepsilon)}{r}$.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i) \frac{s}{r}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$? Modular exponentiation
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?
- We work with $|1\rangle$ as the first register since $\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle$.
- So, we will argue that for each $0 \leq s \leq r-1$, we will obtain an estimate of $\varphi \approx \frac{s}{r}$ accurate to $2 L+1$ bits with probability at least $\frac{(1-\varepsilon)}{r}$.
- Question: How do we extract r from this? Continued fractions

Quantum Computation
 Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive integers a_{0}, \ldots, a_{N} :

$$
\left[a_{0}, \ldots, a_{N}\right] \equiv a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots+\frac{1}{a_{N}}}}}
$$

The $n^{\text {th }}$ convergent $(0 \leq n \leq N)$ of this continued fraction is defined to be $\left[a_{0}, \ldots, a_{n}\right]$.

- Theorem: Suppose $x \geq 1$ is a rational number. Then x has a representation as a continued fraction, $x=\left[a_{0}, \ldots, a_{N}\right]$. This may be found by the continued fraction algorithm.
- Exercise: Find the continued fraction expansion of $\frac{31}{13}$.
- Question: What is the running time for the continued fractions algorithm for any given rational number $\frac{p}{q} \geq 1$?

Quantum Computation
 Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive integers a_{0}, \ldots, a_{N} :

$$
\left[a_{0}, \ldots, a_{N}\right] \equiv a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots+\frac{1}{a_{N}}}}}
$$

The $n^{\text {th }}$ convergent $(0 \leq n \leq N)$ of this continued fraction is defined to be $\left[a_{0}, \ldots, a_{n}\right]$.

- Question: What is the running time for the continued fractions algorithm for any given rational number $\frac{p}{q} \geq 1$?
- Theorem: Let a_{0}, \ldots, a_{N} be a sequence of positive numbers. Then $\left[a_{0}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}$, where p_{n} and q_{n} are real numbers defined inductively by $p_{0} \equiv 0, q_{0} \equiv 1, p_{1} \equiv 1+a_{0} a_{1}, q_{1} \equiv a_{1}$, and for $2 \leq n \leq N$,

$$
\begin{aligned}
p_{n} & \equiv a_{n} p_{n-1}+p_{n-2} \\
q_{n} & \equiv a_{n} q_{n-1}+q_{n-2}
\end{aligned}
$$

In the case when a_{j} are positive integers, so too are p_{j} and q_{j} and moreover $q_{n} p_{n-1}-p_{n} q_{n-1}=(-1)^{n}$ for $n \geq 1$ which implies that $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$.

End

