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Quantum Computation
Phase estimation

Phase estimation

Suppose a unitary operator U has an eigenvector |u〉 with eigenvalue
e2πiϕ. The goal is to estimate ϕ.

We will use the assumption that there are black-boxes that:

prepare the state |u〉, and

perform the controlled-U2j operation.

We will describe a phase estimation procedure that uses two
registers:

A t-qubit register initially in state |0...0〉 (the value of t to be
decided later), and
a register that begins in the state |u〉.
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Quantum Computation
Phase estimation

Phase estimation

Suppose a unitary operator U has an eigenvector |u〉 with eigenvalue
e2πiϕ. The goal is to estimate ϕ.

Claim 1: The final state of the first register in the circuit below is
given by:

1

2t/2

(
|0〉 + e(2πi)2t−1ϕ |1〉

)(
|0〉 + e(2πi)2t−2ϕ |1〉

)
...

(
|0〉 + e(2πi)20ϕ |1〉

)
= 1

2t/2

∑2t−1
k=0

e(2πi)ϕk |k〉
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Phase estimation

Phase estimation

Suppose a unitary operator U has an eigenvector |u〉 with eigenvalue
e2πiϕ. The goal is to estimate ϕ.

Claim 1: The final state of the first register in the circuit below is
given by:

1

2t/2

(
|0〉 + e(2πi)2t−1ϕ |1〉

)(
|0〉 + e(2πi)2t−2ϕ |1〉

)
...

(
|0〉 + e(2πi)20ϕ |1〉

)
= 1

2t/2

∑2t−1
k=0

e(2πi)ϕk |k〉

Question: Suppose ϕ may be expressed exactly as
ϕ = [0 · ϕ1ϕ2...ϕt ]. Suggest a way to retrieve the value of ϕ?
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Phase estimation

Suppose a unitary operator U has an eigenvector |u〉 with eigenvalue
e2πiϕ. The goal is to estimate ϕ.

Claim 1: The final state of the first register in the circuit below is
given by:

1

2t/2

(
|0〉 + e(2πi)2t−1ϕ |1〉

)(
|0〉 + e(2πi)2t−2ϕ |1〉

)
...

(
|0〉 + e(2πi)20ϕ |1〉

)
= 1

2t/2

∑2t−1
k=0

e(2πi)ϕk |k〉

Question: Suppose ϕ may be expressed exactly as
ϕ = [0 · ϕ1ϕ2...ϕt ]. Suggest a way to retrieve the value of ϕ?

Taking the inverse-fourier transform and measuring the value of
the first register in the computational basis gives ϕ.

In general, we will show that the inverse Fourier transform has the
following behaviour:

1
2t/2

∑2t−1
j=0 e(2πi)ϕj |j〉 |u〉 → |ϕ̃〉 |u〉

where |ϕ̃〉 denotes a state that is a good estimator for ϕ when
measured.
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Quantum Computation
Phase estimation

In general, we will show that the inverse Fourier transform has the
following behaviour:

1
2t/2

∑2t−1
j=0 e(2πi)ϕj |j〉 |u〉 → |ϕ̃〉 |u〉

where |ϕ̃〉 denotes a state that is a good estimator for ϕ when
measured.

Claim 2

It is sufficient to run the phase estimation technique with
t = n + log

(
2 + 1

2ε

)
in order to obtain ϕ accurate to n bits with

probability at least (1− ε).
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Claim 2

It is sufficient to run the phase estimation technique with
t = n + dlog

(
2 + 1

2ε

)
e in order to obtain ϕ accurate to n bits with

probability at least (1− ε).

Proof sketch

Let 0 ≤ b ≤ 2t − 1 be an integer such that b
2t = [0 · b1...bt ] is the

best t bit approximation to ϕ that is less than ϕ. Let δ = ϕ− b
2t

(which implies 0 ≤ δ ≤ 2−t).
Claim 2.1: Applying the inverse Fourier transform on the first
register in state 1

2t/2

∑2t−1
k=0 e(2πi)ϕk |k〉 ends in the following state:

1
2t

∑2t−1
k,l=0 e

−(2πi)kl

2t e(2πi)ϕk |l〉 .
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Claim 2

It is sufficient to run the phase estimation technique with
t = n + dlog

(
2 + 1

2ε

)
e in order to obtain ϕ accurate to n bits with

probability at least (1− ε).

Proof sketch

Let 0 ≤ b ≤ 2t − 1 be an integer such that b
2t = [0 · b1...bt ] is the

best t bit approximation to ϕ that is less than ϕ. Let δ = ϕ− b
2t

(which implies 0 ≤ δ ≤ 2−t).
Claim 2.1: Applying the inverse Fourier transform on the first
register in state 1

2t/2

∑2t−1
k=0 e(2πi)ϕk |k〉 ends in the following

state: 1
2t
∑2t−1

k,l=0 e
−(2πi)kl

2t e(2πi)ϕk |l〉 .
Claim 2.2: Let αl be the amplitude of |(b + l) mod 2t〉. Then

αl = 1
2t

(
1−e(2πi)(2tϕ−(b+l))

1−e(2πi)(ϕ−(b+l)/2t )

)
= 1

2t

(
1−e(2πi)(2tδ−l)

1−e(2πi)(δ−l/2t )

)
.
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Claim 2

It is sufficient to run the phase estimation technique with
t = n + dlog

(
2 + 1

2ε

)
e in order to obtain ϕ accurate to n bits with

probability at least (1− ε).

Proof sketch

Let 0 ≤ b ≤ 2t − 1 be an integer such that b
2t = [0 · b1...bt ] is the

best t bit approximation to ϕ that is less than ϕ. Let δ = ϕ− b
2t

(which implies 0 ≤ δ ≤ 2−t).
Claim 2.1: Applying the inverse Fourier transform on the first
register in state 1

2t/2

∑2t−1
k=0 e(2πi)ϕk |k〉 ends in the following

state: 1
2t
∑2t−1

k,l=0 e
−(2πi)kl

2t e(2πi)ϕk |l〉 .
Claim 2.2: Let αl be the amplitude of |(b + l) mod 2t〉. Then

αl = 1
2t

(
1−e(2πi)(2tϕ−(b+l))

1−e(2πi)(ϕ−(b+l)/2t )

)
= 1

2t

(
1−e(2πi)(2tδ−l)

1−e(2πi)(δ−l/2t )

)
.

Claim 2.3: Let e be the error parameter and let m be the
outcome of the measurement. Then

Pr[|m − b| > e] ≤ 1

2(e − 1)
.
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Claim 2

It is sufficient to run the phase estimation technique with
t = n + dlog

(
2 + 1

2ε

)
e in order to obtain ϕ accurate to n bits with

probability at least (1− ε).

Proof sketch

Let 0 ≤ b ≤ 2t − 1 be an integer such that b
2t = [0 · b1...bt ] is the

best t bit approximation to ϕ that is less than ϕ. Let δ = ϕ− b
2t

(which implies 0 ≤ δ ≤ 2−t).
Claim 2.1: Applying the inverse Fourier transform on the first
register in state 1

2t/2

∑2t−1
k=0 e(2πi)ϕk |k〉 ends in the following

state: 1
2t
∑2t−1

k,l=0 e
−(2πi)kl

2t e(2πi)ϕk |l〉 .
Claim 2.2: Let αl be the amplitude of |(b + l) mod 2t〉. Then

αl = 1
2t

(
1−e(2πi)(2tϕ−(b+l))

1−e(2πi)(ϕ−(b+l)/2t )

)
= 1

2t

(
1−e(2πi)(2tδ−l)

1−e(2πi)(δ−l/2t )

)
.

Claim 2.3: Let e be the error parameter and let m be the
outcome of the measurement. Then

Pr[|m − b| > e] ≤ 1

2(e − 1)
.

The claim follows by setting t = n + p and ε = 1
2(2p−1) .
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Phase estimation

Suppose a unitary operator U has an eigenvector |u〉 with eigenvalue
e2πiϕ. The goal is to estimate ϕ.

The phase estimation protocol works when the second register is
set to the eigenstate |u〉. In general, this may not be feasible.
Observation: Any general state |ψ〉 may be written in terms of
the eigenstates of U as

∑
u cu |u〉.

Exercise: The phase estimation procedure takes state
(|0〉)(

∑
u cu |u〉) to

∑
u cu |ϕ̃u〉 |u〉. If t = n + dlog

(
2 + 1

2ε

)
e,

then the probability of measuring ϕu accurate to n bits at the end
of the phase estimation procedure is at least |cu|2(1− ε).
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Phase estimation

Suppose a unitary operator U has an eigenvector |u〉 with eigenvalue
e2πiϕ. The goal is to estimate ϕ.

Phase estimation enables us to design quantum algorithms for the
order-finding and factoring problems.
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Quantum Computation
Phase estimation → Order-finding

Given integers N > x > 0 such that x and N have no common
factors, the order of x modulo N is defined to be the least
positive integer r such that x r = 1 (mod N).
Exercise: What is the order of 5 modulo 21?
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Quantum Computation
Phase estimation → Order-finding

Given integers N > x > 0 such that x and N have no common
factors, the order of x modulo N is defined to be the least
positive integer r such that x r = 1 (mod N).
Exercise: What is the order of 5 modulo 21? 6

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Exercise: Is there an algorithm that computes the order of x
modulo N in time that is polynomial in N?
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Phase estimation → Order-finding

Given integers N > x > 0 such that x and N have no common
factors, the order of x modulo N is defined to be the least
positive integer r such that x r = 1 (mod N).
Exercise: What is the order of 5 modulo 21? 6

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Exercise: Is there an algorithm that computes the order of x
modulo N in time that is polynomial in N? Yes
Exercise: Is it an efficient algorithm?
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Quantum Computation
Phase estimation → Order-finding

Given integers N > x > 0 such that x and N have no common
factors, the order of x modulo N is defined to be the least
positive integer r such that x r = 1 (mod N).
Exercise: What is the order of 5 modulo 21? 6

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Exercise: Is there an algorithm that computes the order of x
modulo N in time that is polynomial in N? Yes
Exercise: Is it an efficient algorithm?
Let L = dlog ne. The number of bits needed to specify the
problem is O(L). So, an efficient algorithm should have running
time that is polynomial in L.
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Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise: Show that U is unitary.
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Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise: Show that U is unitary.
Exercise: Show that the states defined by

|us〉 ≡
1√
r

r−1∑
k=0

e−(2πi)
sk
r

∣∣∣xk (mod N)
〉

are the eigenstates of U. Find the corresponding eigenvalues.
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Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉
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Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.
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Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ?
How do we prepare an eigenstate |us〉?
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Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?
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Quantum Computation
Phase estimation → Order-finding

Modular exponentiation

Given |z〉 |y〉, design a circuit that ends in the state |z〉 |xzy (mod N)〉.

What we wanted to do was |z〉 |y〉 → |z〉Uzt2t−1
...Uz120 |y〉 but

then this is the same as |z〉 |xzy (mod N)〉.
Question: Suppose we work with the first register being of size
t = 2L + 1 + dlog (2 + 1

2ε)e = O(L). What would be the size of
the circuit?
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Quantum Computation
Phase estimation → Order-finding

Modular exponentiation

Given |z〉 |y〉, design a circuit that ends in the state |z〉 |xzy (mod N)〉.

What we wanted to do was |z〉 |y〉 → |z〉Uzt2t−1
...Uz120 |y〉 but

then this is the same as |z〉 |xzy (mod N)〉.
Question: Suppose we work with the first register being of size
t = 2L + 1 + dlog (2 + 1

2ε)e = O(L). What would be the size of
the circuit? O(L3)
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Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

We work with |1〉 as the first register since 1√
r

∑r−1
s=0 |us〉 = |1〉.
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Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

We work with |1〉 as the first register since 1√
r

∑r−1
s=0 |us〉 = |1〉.

So, we will argue that for each 0 ≤ s ≤ r − 1, we will obtain an
estimate of ϕ ≈ s

r accurate to 2L + 1 bits with probability at least
(1−ε)

r .
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Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

We work with |1〉 as the first register since 1√
r

∑r−1
s=0 |us〉 = |1〉.

So, we will argue that for each 0 ≤ s ≤ r − 1, we will obtain an
estimate of ϕ ≈ s

r accurate to 2L + 1 bits with probability at least
(1−ε)

r .

Question: How do we extract r from this? Continued fractions
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Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN ] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Theorem: Suppose x ≥ 1 is a rational number. Then x has a
representation as a continued fraction, x = [a0, ..., aN ]. This may
be found by the continued fraction algorithm.
Exercise: Find the continued fraction expansion of 31

13 .
Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?
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Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN ] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?
Theorem: Let a0, ..., aN be a sequence of positive numbers. Then
[a0, ..., an] = pn

qn
, where pn and qn are real numbers defined

inductively by p0 ≡ 0, q0 ≡ 1, p1 ≡ 1 + a0a1, q1 ≡ a1, and for
2 ≤ n ≤ N,

pn ≡ anpn−1 + pn−2

qn ≡ anqn−1 + qn−2

In the case when aj are positive integers, so too are pj and qj and
moreover qnpn−1 − pnqn−1 = (−1)n for n ≥ 1 which implies that
gcd(pn, qn) = 1.
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