COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

 $\label{eq:Quantum Computation: Complexity class BQP} Quantum \ Computation: \ Complexity \ class \ BQP$

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be 1/4).
- Exercise: Argue that $P \subseteq BPP$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most 1/4. Also, the circuits should be uniformly generated.

- Complexity class BPP: The class of all problems (or languages)
 that can be solved probabilistic polynomial time. That is, a
 randomized algorithm that runs in time polynomial in the input
 length and has a bounded error probability (this can be assumed
 to be 1/4).
- Exercise: Argue that $P \subseteq BPP$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most 1/4. Also, the circuits should be uniformly generated.

• Exercise: Argue that $P \subseteq BPP \subseteq BQP$.

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be 1/4).
- Exercise: Argue that $P \subseteq BPP$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most 1/4. Also, the circuits should be uniformly generated.

- Exercise: Argue that $P \subseteq BPP \subseteq BQP$.
- Complexity class PSPACE: A language is in PSPACE if there is a polynomial space Turing Machine (algorithm) that decides the language.

Quantum Computation

Quantum Complexity

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be 1/4).
- Exercise: Argue that $P \subseteq BPP$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most 1/4. Also, the circuits should be uniformly generated.

- Exercise: Argue that $P \subseteq BPP \subseteq BQP$.
- Complexity class PSPACE: A language is in PSPACE if there is a polynomial space Turing Machine (algorithm) that decides the language.

Theoren

 $BQP \subset PSPACE$.

Theorem

 $BQP \subseteq PSPACE$.

Proof sketch

- For any language L, consider the quantum computer that decides L.
- Let the quantum circuit corresponding to inputs of length n contain p(n) gates for some polynomial p.
- Suppose the quantum circuit starts in state $|0\rangle$ and uses a sequence of gates $U_1, ..., U_{p(n)}$.
- Question: Can we find the probability of this circuit ending in state $|y\rangle$ on final measurement in polynomial space?

Quantum Computation

Quantum Complexity

Theorem

 $BQP \subseteq PSPACE$.

Proof sketch

- \bullet For any language L, consider the quantum computer that decides L.
- Let the quantum circuit corresponding to inputs of length n contain p(n) gates for some polynomial p.
- Suppose the quantum circuit starts in state $|0\rangle$ and uses a sequence of gates $U_1,...,U_{p(n)}$.
- Question: Can we find the probability of this circuit ending in state $|y\rangle$ on final measurement in polynomial space? Yes
 - The probability of measuring state $|y\rangle$ is modulus squared of:

$$\langle y|\; U_{p(n)}...U_1\,|0\rangle$$
 .

We note that

$$\left\langle y\right|\left.U_{p(n)}...U_{1}\left|0\right\rangle = \sum_{x_{1},...,x_{p(n)-1}}\left\langle y\right|\left.U_{p(n)}\left|x_{p(n)-1}\right\rangle\left\langle x_{p(n)-1}\right|\left.U_{p(n)-2}...U_{2}\left|x_{1}\right\rangle\left\langle x_{1}\right|\left.U_{1}\left|0\right\rangle\right..$$

<u>Claim</u>: The above sum can be computed in polynomial space.

End