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Quantum Circuit
Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, CNOT, and π/8 gates.

Proof sketch

Claim 1: A single qubit operation may be approximated to
arbitrary accuracy using the Hadamard, phase, and π/8 gates.
Claim 2: An arbitrary unitary operator may be expressed exactly
using single qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed exactly
as a product of unitary operators that each acts non-trivially only
on a subspace spanned by two computational basis states (such
gates are called two-level gates).
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using using single qubit and CNOT gates.

A discrete set of gates cannot be used to implement an arbitrary
unitary operation.
However, it may be possible to approximate any unitary gate
using a discrete set of gates.
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

We first need to define a notion of approximating a unitary
operation.
Let U and V be unitary operators on the same state space.

U denotes the target unitary operator that we would like to
implement.
V is the operator that is actually implemented.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Question: Why is the above a reasonable notion of error when
implementing V instead of U?
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Claim 1.1

Suppose we wish to implement a quantum circuit with m gates
U1, ...,Um. However, we can only implement V1, ...,Vm. The
difference in probabilities of a measurement outcome will be at most a
tolerance ∆ > 0 given that ∀j ,E (Uj ,Vj) ≤ ∆

2m .
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Claim 1.1

Suppose we wish to implement a quantum circuit with m gates
U1, ...,Um. However, we can only implement V1, ...,Vm. The
difference in probabilities of a measurement outcome will be at most a
tolerance ∆ > 0 given that ∀j ,E (Uj ,Vj) ≤ ∆

2m .

Proof sketch

Claim 1.1.1: For any POVM element M let PU and PV denote
the probabilities for measuring this element when U and V are
used respectively. Then |PU − PV | ≤ 2 · E (U,V ).
Claim 1.1.2: E (UmUm−1...U1,VmVm−1...V1) ≤

∑m
j=1 E (Uj ,Vj).
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

Claim 1(a): The T =
[

1 0
0 e iπ/4

]
gate is (upto a global phase

factor) a rotation by π/4 around the ẑ axis on the Block sphere.
Claim 1(b): The operation HTH is a rotation by π/4 around the
x̂ axis on the Bloch sphere.
Claim 1(c): Composing T and HTH gives (upto a global phase):

e−i
π
8
Ze−i

π
8
X = cos2 π

8
I − i

[
cos

π

8
(X + Z ) + sin

π

8
Y
]

sin
π

8

which may be interpreted as rotation of the Bloch sphere about
an axis along ~n = (cos π8 , sin π

8 , cos π8 ) with unit vector n̂ by an

angle θ that satisfies cos θ2 = cos2 π
8 . Moreover θ is an irrational

multiple of 2π.
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

Claim 1(c): Composing T and HTH gives (upto a global phase):

e−i
π
8
Ze−i

π
8
X = cos2 π

8
I − i

[
cos

π

8
(X + Z ) + sin

π

8
Y
]

sin
π

8

which may be interpreted as rotation of the Bloch sphere about
an axis along ~n = (cos π8 , sin π

8 , cos π8 ) with unit vector n̂ by an

angle θ that satisfies cos θ2 = cos2 π
8 . Moreover θ is an irrational

multiple of 2π.
Claim 1(d): For any α and ε > 0, there exists a positive integer n
such that E (Rn̂(α),Rn̂(θ)n) < ε/3.
(In simpler terms, Rn̂(α) can be approximated to arbitrary
accuracy by repeated application of Rn̂(θ).)

Uses the lemma that E (Rn̂(α),Rn̂(α + β)) = |1− e iβ/2|.
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

Claim 1(c): Composing T and HTH gives (upto a global phase):

e−i
π
8
Ze−i

π
8
X = cos2 π

8 I − i
[
cos π8 (X + Z ) + sin π

8Y
]

sin π
8 , which

may be interpreted as rotation of the Bloch sphere about an axis
along ~n = (cos π8 , sin π

8 , cos π8 ) with unit vector n̂ by an angle θ

that satisfies cos θ2 = cos2 π
8 . Moreover θ is an irrational multiple

of 2π.
Claim 1(d): For any α and ε > 0, there exists a positive integer n
such that E (Rn̂(α),Rn̂(θ)n) < ε/3.
Claim 1(e): For any α, HRn̂(α)H = Rm̂(α) where m̂ is a unit
vector in the direction (cos π8 ,− sin π

8 , cos π8 ).
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

Claim 1(c): Composing T and HTH gives (upto a global phase):

e−i
π
8
Ze−i

π
8
X = cos2 π

8 I − i
[
cos π8 (X + Z ) + sin π

8Y
]

sin π
8 , which

may be interpreted as rotation of the Bloch sphere about an axis
along ~n = (cos π8 , sin π

8 , cos π8 ) with unit vector n̂ by an angle θ

that satisfies cos θ2 = cos2 π
8 . Moreover θ is an irrational multiple

of 2π.
Claim 1(d): For any α and ε > 0, there exists a positive integer n
such that E (Rn̂(α),Rn̂(θ)n) < ε/3.
Claim 1(e): For any α, HRn̂(α)H = Rm̂(α) where m̂ is a unit
vector in the direction (cos π8 ,− sin π

8 , cos π8 ).
Claim 1(f): An arbitrary single qubit unitary operator U (upto a
global phase) may be written as

U = Rn̂(β)Rm̂(γ)Rn̂(δ).
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

Claim 1(c): Composing T and HTH gives (upto a global phase):

e−i
π
8
Ze−i

π
8
X = cos2 π

8 I − i
[
cos π8 (X + Z ) + sin π

8Y
]

sin π
8 , which

may be interpreted as rotation of the Bloch sphere about an axis
along ~n = (cos π8 , sin π

8 , cos π8 ) with unit vector n̂ by an angle θ

that satisfies cos θ2 = cos2 π
8 . Moreover θ is an irrational multiple

of 2π.
Claim 1(d): For any α and ε > 0, there exists a positive integer n
such that E (Rn̂(α),Rn̂(θ)n) < ε/3.
Claim 1(e): For any α, HRn̂(α)H = Rm̂(α) where m̂ is a unit
vector in the direction (cos π8 ,− sin π

8 , cos π8 ).
Claim 1(f): An arbitrary single qubit unitary operator U (upto a
global phase) may be written as U = Rn̂(β)Rm̂(γ)Rn̂(δ).
Claim 1(g): For any ε > 0, there exists positive integers n1, n2, n3

such that:

E (U,Rn̂(θ)n1HRn̂(θ)n2HRn̂(θ)n3) < ε.
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

Claim 1(c): Composing T and HTH gives (upto a global phase):

e−i
π
8
Ze−i

π
8
X = cos2 π

8 I − i
[
cos π8 (X + Z ) + sin π

8Y
]

sin π
8 , which

may be interpreted as rotation of the Bloch sphere about an axis
along ~n = (cos π8 , sin π

8 , cos π8 ) with unit vector n̂ by an angle θ

that satisfies cos θ2 = cos2 π
8 . Moreover θ is an irrational multiple

of 2π.
Claim 1(d): For any α and ε > 0, there exists a positive integer n
such that E (Rn̂(α),Rn̂(θ)n) < ε/3.
Claim 1(e): For any α, HRn̂(α)H = Rm̂(α) where m̂ is a unit
vector in the direction (cos π8 ,− sin π

8 , cos π8 ).
Claim 1(f): An arbitrary single qubit unitary operator U (upto a
global phase) may be written as U = Rn̂(β)Rm̂(γ)Rn̂(δ).
Claim 1(g): For any ε > 0, there exists positive integers n1, n2, n3

such that: E (U,Rn̂(θ)n1HRn̂(θ)n2HRn̂(θ)n3) < ε.

Question: What is the dependence of n1, n2, n3 in terms of the
error parameter ε?
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

Question: What is the complexity of this approximate
construction in the worst case?

Theorem (Solovay-Kitaev Theorem)

An arbitrary single qubit gate may be approximated to an accuracy ε
using O(logc(1/ε)) gates from our discrete set, where c ≈ 2 is a small
constant.
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

Question: What is the complexity of this approximate
construction in the worst case?

Theorem (Solovay-Kitaev Theorem)

An arbitrary single qubit gate may be approximated to an accuracy ε
using O(logc(1/ε)) gates from our discrete set, where c ≈ 2 is a small
constant.

Corollary: A circuit containing m CNOT and single qubit unitary
operations can be approximated to accuracy ε using
O(m logc(m/ε)) gates from our discrete set.
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Quantum Circuit
Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, CNOT, and π/8 gates.

Question: Given a unitary transformation U on n qubits, does
there always exist a circuit of size polynomial in n approximating
U?
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Quantum Circuit
Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, CNOT, and π/8 gates.

Question: Given a unitary transformation U on n qubits, does
there always exist a circuit of size polynomial in n approximating
U? No

Theorem

Suppose we have g different types of gates each acting on at most f
qubits. In this setup, if any unitary operation on n qubits can be
approximated to within ε accuracy using m gates, then

m = Ω
(

2n log 1/ε
log n

)
.
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Quantum Circuit
Universal quantum gates

Theorem

Suppose we have g different types of gates each acting on at most f
qubits. In this setup, if any unitary operation on n qubits can be
approximated to within ε accuracy using m gates, then

m = Ω
(

2n log 1/ε
log n

)
.

Proof sketch

The proof is by a covering argument.
Claim 1: A arbitrary state |ψ〉 can be thought of as a point on
the surface of a unit ball in 2n+1 dimensions. That is, a point on
the (2n+1 − 1)-sphere with unit radius.
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Quantum Circuit
Universal quantum gates

Theorem

Suppose we have g different types of gates each acting on at most f
qubits. In this setup, if any unitary operation on n qubits can be
approximated to within ε accuracy using m gates, then

m = Ω
(

2n log 1/ε
log n

)
.

Proof sketch

The proof is by a covering argument.
Claim 1: A arbitrary state |ψ〉 can be thought of as a point on
the surface of a unit ball in 2n+1 dimensions. That is, a point on
the (2n+1 − 1)-sphere with unit radius.
Fact from Geometry: The surface area of radius ε near |ψ〉 is
approximately same as the volume of a (2n+1 − 2)-sphere of
radius ε.
Claim 2: The number of patches required to cover state space is

Ω
(

1

ε2n+1−1

)
.
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Quantum Circuit
Universal quantum gates

Theorem

Suppose we have g different types of gates each acting on at most f
qubits. In this setup, if any unitary operation on n qubits can be
approximated to within ε accuracy using m gates, then

m = Ω
(

2n log 1/ε
log n

)
.

Proof sketch

The proof is by a covering argument.
Claim 1: A arbitrary state |ψ〉 can be thought of as a point on
the surface of a unit ball in 2n+1 dimensions. That is, a point on
the (2n+1 − 1)-sphere with unit radius.
Fact from Geometry: The surface area of radius ε near |ψ〉 is
approximately same as the volume of a (2n+1 − 2)-sphere of
radius ε.
Claim 2: The number of patches required to cover state space is

Ω
(

1

ε2n+1−1

)
.

Claim 3: The number of patches we can hit with m gates is
O(nfmg).
Combining claims 2 and 3, we get the statement of the
theorem.
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