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Quantum Computation: Quantum circuits
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Quantum Circuit
Controlled operations

Theoerm

Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators A,B,C on a single qubit such that ABC = I and
U = e iαAXBXC , where α is some overall phase factor.

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Construction sketch

The construction follows from the following circuit equivalences.
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates?
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates? Yes

Construction sketch

The construction follows from the following circuit equivalence.

Here V is such that V 2 = U.
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with n
control qubits using only CNOT and single-qubit gates?
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with n
control qubits using only CNOT and single-qubit gates? Yes using
ancilla qubits

Construction sketch

An example construction with n = 4.
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Quantum Circuit
Controlled operations

A few other gates and circuit identities:

Figure: NOT gate applied to the target qubit conditional on the control qubit
being 0.
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Quantum Circuit
Measurements

Principle of deferred measurements

Measurements can always be moved from an intermediate stage of a
quantum circuit to the end of the circuit; if the measurement results
are used at any stage of the circuit, then the clasically controlled
operations can be replaced by conditional quantum operations.
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Quantum Circuit
Measurements

Principle of deferred measurements

Measurements can always be moved from an intermediate stage of a
quantum circuit to the end of the circuit; if the measurement results
are used at any stage of the circuit, then the clasically controlled
operations can be replaced by conditional quantum operations.

Principle of implicit measurement

Without loss of generality, any unterminated quantum wires (qubits
which are not measured) at the end of a quantum circuit may be
assumed to be measured.

Exercise: Suppose ρ is the density matrix describing a two qubit
system. Suppose we perform a projective measurement in the
computational basis of the second qubit. Let P0 = I ⊗ |0〉 〈0| and
P1 = I ⊗ |1〉 〈1| be the projectors onto the |0〉 and |1〉 states of
the second qubit, respectively. Let ρ′ be the density matrix which
would be assigned to the system after the measurement by an
observer who did not learn the measurement result. Show that

ρ′ = P0ρP0 + P1ρP1.

Also show that the reduced density matrix for the first qubit is
not affected by the measurement, that is, tr2(ρ) = tr2(ρ′).
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Quantum Circuit
Measurements

Principle of deferred measurements

Measurements can always be moved from an intermediate stage of a
quantum circuit to the end of the circuit; if the measurement results
are used at any stage of the circuit, then the clasically controlled
operations can be replaced by conditional quantum operations.

Principle of implicit measurement

Without loss of generality, any unterminated quantum wires (qubits
which are not measured) at the end of a quantum circuit may be
assumed to be measured.

Exercise: Show that measurement commutes with control.
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Quantum Circuit
Universal quantum gates

A set of gates is said to be universal for quantum computation if
any unitary operation may be approximated to arbitrary
accuracy by a quantum circuit involving only those gates.

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, CNOT, and π/8 gates.
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Quantum Circuit
Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, CNOT, and π/8 gates.

Proof sketch

Claim 1: A single qubit operation may be approximated to
arbitrary accuracy using the Hadamard, phase, and π/8 gates.
Claim 2: An arbitrary unitary operator may be expressed exactly
using single qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed exactly
as a product of unitary operators that each acts non-trivially only
on a subspace spanned by two computational basis states (such
gates are called two-level gates).
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using using single qubit and CNOT gates.

What about efficiency?

Upper-bound: Any unitary can be approximated using
exponentially many gates.
Lower-bound: There exists a unitary operation that which require
exponentially many gates to approximate.
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Quantum Circuit
Universal quantum gates

Claim 2.1

An arbitrary unitary operator may be expressed exactly as a product
of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states.

Proof sketch

The main idea can be understood using a 3× 3 unitary matrix:

U =

a d g
b e h
c f j

 .
We will find two-level unitary matrices U1,U2,U3 such that

U3U2U1U = I and U = U†1U
†
2U
†
3
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Quantum Circuit
Universal quantum gates

Claim 2.1

An arbitrary unitary operator may be expressed exactly as a product
of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states.

Proof sketch

The main idea can be understood using a 3× 3 unitary matrix:

U =

a d g
b e h
c f j

 .
We will find two-level unitary matrices U1,U2,U3 such that

U3U2U1U = I and U = U†1U
†
2U
†
3

Exercise

Show that any d × d unitary matrix can be written in terms of
d(d − 1)/2 two-level matrices.
There exists a d × d unitary matrix U which cannot be
decomposed as a product of fewer than d − 1 two-level unitary
matrices.
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Quantum Circuit
Universal quantum gates

Claim 2

An arbitrary unitary operator may be expressed exactly using single
qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed
exactly as a product of unitary operators that each acts
non-trivially only on a subspace spanned by two computational
basis states.
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using using single qubit and CNOT gates.

Proof sketch

Let U be a two-level unitary matrix on a n-qubit quantum
computer.
Let U act non-trivially on the space spanned by the
computational basis states |s〉 and |t〉, where s = s1, ..., sn and
t = t1, ..., tn are n-bit binary strings.
Let Ũ be the non-trivial 2× 2 submatrix of U. Note that we can
think Ũ to be a unitary operator on a single qubit.
We will use the gray-code connecting s and t which is a sequence
of n-bit strings staring with s and ending with t such that the
subsequent strings in the sequence differ only on one bit.
Example: s = 101001, t = 110011.

g1 = 101001; g2 = 101011; g3 = 100011; g4 = 110011

Main idea:

We will design a sequence of swaps
|g1〉 → |gm−1〉 , |g2〉 → |g1〉 , |g3〉 → |g2〉 , ..., |gm−1〉 → |gm−2〉.
We will apply Ũ to the qubit that differs in gm−1 and gm.
Swap |gm−1〉 with |gm−2〉, |gm−2〉 with |gm−3〉 and so on.
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Quantum Circuit
Universal quantum gates

Claim 2.2

An arbitrary two-level unitary operator may be expressed exactly using
using single qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =



a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
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Quantum Circuit
Universal quantum gates

Claim 2.2

An arbitrary two-level unitary operator may be expressed exactly using
using single qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =



a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
Construction:
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Quantum Circuit
Universal quantum gates

Claim 2.2

An arbitrary two-level unitary operator may be expressed exactly using
using single qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =


a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
Construction:

Exercise

For an arbitrary unitary operator on an n-qubit system, how many
CNOT and single qubit gate willl be required in the entire
construction?

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information



Quantum Circuit
Universal quantum gates

Claim 2

An arbitrary unitary operator may be expressed exactly using single
qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =


a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
Construction:

Exercise

For an arbitrary unitary operator on an n-qubit system, how many
CNOT and single qubit gate willl be required in the entire
construction? O(n24n) gates.
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Quantum Circuit
Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, phase, CNOT, and π/8 gates.

Proof sketch

Claim 1: A single qubit operation may be approximated to
arbitrary accuracy using the Hadamard, phase, and π/8 gates.
Claim 2: An arbitrary unitary operator may be expressed exactly
using single qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed exactly
as a product of unitary operators that each acts non-trivially only
on a subspace spanned by two computational basis states (such
gates are called two-level gates).
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using using single qubit and CNOT gates.

A discrete set of gates cannot be used to implement an arbitrary
unitary operation.
However, it may be possible to approximate any unitary gate
using a discrete set of gates.
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

We first need to define a notion of approximating a unitary
operation.
Let U and V be unitary operators on the same state space.

U denotes the target unitary operator that we would like to
implement.
V is the operator that is actually implemented.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Question: Why is the above a reasonable notion of error when
implementing V instead of U?
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Claim 1.1

Suppose we wish to implement a quantum circuit with m gates
U1, ...,Um. However, we can only implement V1, ...,Vm. The
difference in probabilities of a measurement outcome will be at most a
tolerance ∆ > 0 given that ∀j ,E (Uj ,Vj) ≤ ∆

2m .
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Quantum Circuit
Universal quantum gates

Claim 1

A single qubit operation may be approximated to arbitrary accuracy
using the Hadamard, phase, and π/8 gates.

The error (w.r.t. implementing V instead of U) is defined as

E (U,V ) ≡ max
|ψ〉
||(U − V ) |ψ〉 ||

Claim 1.1

Suppose we wish to implement a quantum circuit with m gates
U1, ...,Um. However, we can only implement V1, ...,Vm. The
difference in probabilities of a measurement outcome will be at most a
tolerance ∆ > 0 given that ∀j ,E (Uj ,Vj) ≤ ∆

2m .

Proof sketch

Claim 1.1.1: For any POVM element M let PU and PV denote
the probabilities for measuring this element when U and V are
used respectively. Then |PU − PV | ≤ 2 · E (U,V ).
Claim 1.1.2: E (UmUm−1...U1,VmVm−1...V1) ≤

∑m
j=1 E (Uj ,Vj).
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End
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