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Quantum Computation: Quantum circuits
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Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
Simplification: A qubit α |0〉+ β |1〉 may be represented as

cos θ2 |0〉+ e iψ sin θ
2 |1〉. So, any tuple (θ, ψ) represents a qubit.

This has a nice visualisation in terms of Bloch sphere.
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Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
Simplification: A qubit α |0〉+ β |1〉 may be represented as

cos θ2 |0〉+ e iψ sin θ
2 |1〉. So, any tuple (θ, ψ) represents a qubit.

This has a nice visualisation in terms of Bloch sphere.

The vector (cosψ sin θ, sinψ sin θ, cos θ) is called the Bloch vector.
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Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
Pauli matrices give rise to three useful classes of unitary matrices
when they are exponentiated, the rotational operators about the
x̂ , ŷ , and ẑ axis.

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
Ry (θ) ≡ e−iθY /2 = cos

θ

2
I − i sin

θ

2
Y =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
Rz(θ) ≡ e−iθZ/2 = cos

θ

2
I − i sin

θ

2
Z =

[
e−iθ/2 0

0 e iθ/2

]
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Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
A few useful results:

Let n̂ = (nx , ny , nz) be a real unit vector. The rotation by θ about
the n̂ axis is given by

Rn̂(θ) ≡ e−i
θ
2 (n̂·~σ) = cos

θ

2
I − i sin

θ

2
(nxX + nyY + nzZ ),

where ~σ denotes the vector (X ,Y ,Z ).
Theorem: Suppose U is a unitary operator on a single qubit. Then
there exist real numbers α, β, γ, and δ such that
U = e iαRz(β)Ry (γ)Rz(δ).
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Quantum Circuit
Single qubit operations

Theorem

Suppose U is a unitary operator on a single qubit. Then there exist
real numbers α, β, γ, and δ such that U = e iαRz(β)Ry (γ)Rz(δ).

Proof sketch

There are real numbers α, β, γ, δ such that:

U =

[
e i(α−β/2−δ/2) cos γ2 −e i(α−β/2+δ/2) sin γ

2

e i(α+β/2−δ/2) sin γ
2 e i(α+β/2+δ/2) cos γ2

]
Now one just needs to verify that the RHS matches
e iαRz(β)Ry (γ)Rz(δ).
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Quantum Circuit
Single qubit operations

Theorem

Suppose U is a unitary operator on a single qubit. Then there exist
real numbers α, β, γ, and δ such that U = e iαRz(β)Ry (γ)Rz(δ).

Theoerm

Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators A,B,C on a single qubit such that ABC = I and
U = e iαAXBXC , where α is some overall phase factor.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information



Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
Summary:

The above matrices are fundamental entities that define general
classes of single-qubit unitary gates such that any single-qubit
unitary gate can be represented in terms of these gates.
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:

Some exercises:

Build a CNOT gate from one Controlled-Z gate and two Hadamard
gates.
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:

Some exercises:

Build a CNOT gate from one Controlled-Z gate and two Hadamard
gates.
Show that:
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:

Some exercises:

Show that:
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates?
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates?

Theoerm

Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators A,B,C on a single qubit such that ABC = I and
U = e iαAXBXC , where α is some overall phase factor.
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Quantum Circuit
Controlled operations

Theoerm

Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators A,B,C on a single qubit such that ABC = I and
U = e iαAXBXC , where α is some overall phase factor.

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Construction sketch

The construction follows from the following circuit equivalences.
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates?
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates? Yes

Construction sketch

The construction follows from the following circuit equivalence.

Here V is such that V 2 = U.
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with n
control qubits using only CNOT and single-qubit gates?
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with n
control qubits using only CNOT and single-qubit gates? Yes using
ancilla qubits

Construction sketch

An example construction with n = 4.
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Quantum Circuit
Controlled operations

A few other gates and circuit identities:

Figure: NOT gate applied to the target qubit conditional on the control qubit
being 0.
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Quantum Circuit
Measurements

Principle of deferred measurements

Measurements can always be moved from an intermediate stage of a
quantum circuit to the end of the circuit; if the measurement results
are used at any stage of the circuit, then the clasically controlled
operations can be replaced by conditional quantum operations.
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Quantum Circuit
Measurements

Principle of deferred measurements

Measurements can always be moved from an intermediate stage of a
quantum circuit to the end of the circuit; if the measurement results
are used at any stage of the circuit, then the clasically controlled
operations can be replaced by conditional quantum operations.

Principle of implicit measurement

Without loss of generality, any unterminated quantum wires (qubits
which are not measured) at the end of a quantum circuit may be
assumed to be measured.

Exercise: Suppose ρ is the density matrix describing a two qubit
system. Suppose we perform a projective measurement in the
computational basis of the second qubit. Let P0 = I ⊗ |0〉 〈0| and
P1 = I ⊗ |1〉 〈1| be the projectors onto the |0〉 and |1〉 states of
the second qubit, respectively. Let ρ′ be the density matrix which
would be assigned to the system after the measurement by an
observer who did not learn the measurement result. Show that

ρ′ = P0ρP0 + P1ρP1.

Also show that the reduced density matrix for the first qubit is
not affected by the measurement, that is, tr2(ρ) = tr2(ρ′).
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End
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