COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics

Quantum Mechanics
 Postulates: Composite system

- Claim: (Projective measurement + unitary operators) = generalised measurement.

Proof sketch

- Let Q be the state space of the quantum system in which we would like to make a generalised measurement using measurement operators M_{m}.
- We introduce an ancilla system with state space M with orthonormal basis $|m\rangle$.
- Let U be an operator defined as

$$
U|\psi\rangle|0\rangle \equiv \sum_{m} M_{m}|\psi\rangle|m\rangle
$$

where $|0\rangle$ is an arbitrary state of M.

- Claim 1: U preserves inner products between states of the form $|\psi\rangle|0\rangle$.

Quantum Mechanics
 Postulates: Composite system

- Claim: (Projective measurement + unitary operators $)=$ generalised measurement.

Proof sketch

- Let Q be the state space of the quantum system in which we would like to make a generalised measurement using measurement operators M_{m}.
- We introduce an ancilla system with state space M with orthonormal basis $|m\rangle$.
- Let U be an operator defined as

$$
U|\psi\rangle|0\rangle \equiv \sum_{m} M_{m}|\psi\rangle|m\rangle
$$

where $|0\rangle$ is an arbitrary state of M.

- Claim 1: U preserves inner products between states of the form $|\psi\rangle|0\rangle$.
- Claim 2: U can be extended to a unitary operator on $Q \otimes M$ (let us denote this by U itself).
- Claim 3: Let $P_{m}=I_{Q} \otimes|m\rangle\langle m|$. Projective measurement using P_{m} on $Q \otimes M$ is similar to generalised measurement using M_{m} on Q.

Quantum Mechanics
 Superdense coding

Superdense coding problem

Alice wants to send two classical bits to Bob. They share a Bell pair and the constraint is that Alice can only send a single qubit to Bob.

Quantum Mechanics

- The trace of a square matrix is defined to be the sum of diagonal elements. That is:

$$
\operatorname{tr}(A) \equiv \sum_{i} A_{i i}
$$

- Exercise: Show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
- Exercise: Show that $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
- Exercise: Show that $\operatorname{tr}(z A)=z \operatorname{tr}(A)$.
- Exercise: Show that the trace operator is invariant under change of basis.
- Exercise: Show that for any orthonormal basis $|i\rangle$,

$$
\operatorname{tr}(A)=\sum_{i}\langle i| A|i\rangle
$$

- Exercise: Show that for any unit vector $|\psi\rangle$,

$$
\operatorname{tr}(A|\psi\rangle\langle\psi|)=\langle\psi| A|\psi\rangle
$$

Quantum Mechanics

- We formulated the postulates of Quantum Mechanics using state vectors.
- An alternative and mathematically equivalent formulation is through density operators and density matrices.
- Why: Talking about individual subsystems of a composite system becomes simpler.

Quantum Mechanics

- We formulated the postulates of Quantum Mechanics using state vectors.
- An alternative and mathematically equivalent formulation is through density operators and density matrices.
- Why: Talking about individual subsystems of a composite system becomes simpler.
- The density operator is used to describe an ensemble of pure states $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$. That is, a quantum system that is in state $\left|\psi_{i}\right\rangle$ with probability p_{i}.
- Question Can you give a scenario where it may be useful to describe such an ensemble of states?
- Density operator: The density operator of such a system is defined by:

$$
\rho \equiv \sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

- The density operator is often known as density matrix.

End

