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Quantum Mechanics
Postulates: Composite system

Claim: (Projective measurement + unitary operators) =
generalised measurement.

Proof sketch

Let Q be the state space of the quantum system in which we
would like to make a generalised measurement using
measurement operators Mm.
We introduce an ancilla system with state space M with
orthonormal basis |m〉.
Let U be an operator defined as

U |ψ〉 |0〉 ≡
∑
m

Mm |ψ〉 |m〉

where |0〉 is an arbitrary state of M.
Claim 1: U preserves inner products between states of the form
|ψ〉 |0〉.
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Quantum Mechanics
Postulates: Composite system

Claim: (Projective measurement + unitary operators) =
generalised measurement.

Proof sketch

Let Q be the state space of the quantum system in which we
would like to make a generalised measurement using
measurement operators Mm.
We introduce an ancilla system with state space M with
orthonormal basis |m〉.
Let U be an operator defined as

U |ψ〉 |0〉 ≡
∑
m

Mm |ψ〉 |m〉

where |0〉 is an arbitrary state of M.
Claim 1: U preserves inner products between states of the form
|ψ〉 |0〉.
Claim 2: U can be extended to a unitary operator on Q ⊗M (let
us denote this by U itself).
Claim 3: Let Pm = IQ ⊗ |m〉 〈m|. Projective measurement using
Pm on Q ⊗M is similar to generalised measurement using Mm on
Q.
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Quantum Mechanics
Superdense coding

Superdense coding problem

Alice wants to send two classical bits to Bob. They share a Bell pair
and the constraint is that Alice can only send a single qubit to Bob.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information



Quantum Mechanics
The density operator: Trace

The trace of a square matrix is defined to be the sum of diagonal
elements. That is:

tr(A) ≡
∑
i

Aii

Exercise: Show that tr(AB) = tr(BA).
Exercise: Show that tr(A + B) = tr(A) + tr(B).
Exercise: Show that tr(zA) = ztr(A).
Exercise: Show that the trace operator is invariant under change
of basis.
Exercise: Show that for any orthonormal basis |i〉,

tr(A) =
∑
i

〈i |A |i〉 .

Exercise: Show that for any unit vector |ψ〉,

tr(A |ψ〉 〈ψ|) = 〈ψ|A |ψ〉 .
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Quantum Mechanics
The density operator

We formulated the postulates of Quantum Mechanics using state
vectors.
An alternative and mathematically equivalent formulation is
through density operators and density matrices.

Why: Talking about individual subsystems of a composite system
becomes simpler.
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Quantum Mechanics
The density operator

We formulated the postulates of Quantum Mechanics using state
vectors.
An alternative and mathematically equivalent formulation is
through density operators and density matrices.

Why: Talking about individual subsystems of a composite system
becomes simpler.

The density operator is used to describe an ensemble of pure
states {pi , |ψi 〉}. That is, a quantum system that is in state |ψi 〉
with probability pi .

Question Can you give a scenario where it may be useful to
describe such an ensemble of states?

Density operator: The density operator of such a system is
defined by:

ρ ≡
∑
i

pi |ψi 〉 〈ψi |

The density operator is often known as density matrix.
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End
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