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Quantum Mechanics
Postulates

The postulates of quantum mechanics were derived after a
long process of trial and error.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector
space with inner product (Hilbert space) known as the state space
of the system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.
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Quantum Mechanics
Postulates

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space
with inner product (Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which
is a unit vector in the system’s state space.

Determining the state space of real systems may be complicated
and beyond the scope of our discussion.
We start with a simplest quantum mechanical system (a qubit)
that has a two-dimensional state space with |0〉 and |1〉 being the
orthonormal basis. This system is described by a state vector |ψ〉
where 〈ψ|ψ〉 = 1.
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Quantum Mechanics
Postulates

Postulate 2 (Evolution)

The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |ψ〉 of the system at time t1 is
related to the state |ψ′〉 of the system at time t2 by a unitary operator
U which only depends on the times t1 and t2, |ψ′〉 = U |ψ〉.

Doesn’t applying a unitary gate contradict with the system being
closed?
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

The index m refers to the measurement outcomes that may occur
in the experiment.
If the state of the system is |ψ〉 immediately before the
measurement, then the probability that the result m occurs is
given by

p(m) = 〈ψ|M†
mMm |ψ〉 ,

and the state of the system after the measurement is given by

Mm |ψ〉√
〈ψ|M†

mMm |ψ〉

The measurement operators satisfy the completeness equation,∑
m

M†
mMm = I

.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurement is a special class of measurements and
defines as special case of measurement postulate 3.

Is this a weaker notion than the generalized measurement
postulate? No

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Observation: Generalized measurements where the measurement
operators are constrained to be orthogonal projectors are the
same as projective measurements.
Exercise: Mm are orthogonal projectors if and only if Mm are
Hermitian and MmMm′ = δm,m′Mm.

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information



Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Observation: Generalized measurements where the measurement
operators are constrained to be orthogonal projectors are the
same as projective measurements.
Exercise: Mm are orthogonal projectors if and only if Mm are
Hermitian and MmMm′ = δm,m′Mm.
Observation: Generalized measurements where the measurement
operators Mm have additional constraints that Mm are Hermitian
and MmMm′ = δm,m′Mm, are the same as projective
measurements.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Claim: The average value of the measurement, denoted by E[M],
is given by E[M] = 〈ψ|M |ψ〉.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Exercise: Suppose we measure state ψ that is an eigenvector
corresponding to eigenvalue m of the observable M. What is
E[M]?
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Describing the observable M is one way to define the projective
measurement. Other ways include:

A set of orthogonal projectors Pm satisfying completeness, that is,∑
m Pm = I . The observable in this case is

∑
m mPm.

An orthonormal basis |m〉 in which case, Pm = |m〉 〈m|.
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Quantum Mechanics
Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a
Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition M =
∑

m mPm,
where Pm is the projector onto the eigenspace of M with
eigenvalue m.
The possible outcomes of the measurement correspond to the
eigenvalues, m, of the observable.
The probability of measuring outcome being m on measuring
state |ψ〉 is given by p(m) = 〈ψ|Pm |ψ〉.
Given that m is the outcome of the measurement, the
post-measurement state is Pm|ψ〉√

p(m)
.

Exercise: Discuss projective measurement of the state |0〉+|1〉√
2

w.r.t. observable Z .
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Quantum Mechanics
Postulates: POVM measurements

The measurement postulate defines rules for
1 measurement statistics, and
2 post-measurement state.

For certain applications, the post-measurement state is not very
important.

Can you think of such a scenario?

POVM stands for Positive Operator-Valued Measure. The main
ideas are captured in the following points:

For generalised measurement operators Mm and state |ψ〉, the
measurement statistics are given by p(m) = 〈ψ|M†

mM |ψ〉.
Since we are interested only in the measurement statistics, it will
be sufficient to describe the measurement using positive operators

Em ≡ M†
mMm

Observation:
∑

m Em = I and p(m) = 〈ψ|Em |ψ〉.
Notation: The operators Em are called POVM elements associated
with the measurement and set {Em} is known as POVM.
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Postulates: POVM measurements

POVM stands for Positive Operator-Valued Measure. The main
ideas are captured in the following points:

For generalised measurement operators Mm and state |ψ〉, the
measurement statistics are given by p(m) = 〈ψ|M†

mM |ψ〉.
Since we are interested only in the measurement statistics, it will
be sufficient to describe the measurement using positive operators

Em ≡ M†
mMm

Observation:
∑

m Em = I and p(m) = 〈ψ|Em |ψ〉.
Notation: The operators Em are called POVM elements associated
with the measurement and set {Em} is known as POVM.

Exercise: Let Em be an arbitrary set of positive operators such
that

∑
m Em = I . Does there exist measurement operators Mm

with the same measurement statistics are ones defined by Em?
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Quantum Mechanics
Postulates: POVM measurements

POVM stands for Positive Operator-Valued Measure. The main
ideas are captured in the following points:

For generalised measurement operators Mm and state |ψ〉, the
measurement statistics are given by p(m) = 〈ψ|M†

mM |ψ〉.
Since we are interested only in the measurement statistics, it will
be sufficient to describe the measurement using positive operators

Em ≡ M†
mMm

Observation:
∑

m Em = I and p(m) = 〈ψ|Em |ψ〉.
Notation: The operators Em are called POVM elements associated
with the measurement and set {Em} is known as POVM.

Exercise: Let Em be an arbitrary set of positive operators such
that

∑
m Em = I . Does there exist measurement operators Mm

with the same measurement statistics are ones defined by Em?

Yes. Mm =
√
Em.
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Quantum Mechanics
Postulates: POVM measurements

POVM application: Show that the following POVM

E1 ≡
√

2

1 +
√

2
|1〉 〈1|

E2 ≡
√

2

1 +
√

2

(|0〉 − |1〉)(〈0| − 〈1|)
2

E3 ≡ I − E1 − E2

helps to distinguish states |0〉 and |0〉+|1〉√
2

with the caveat that

sometimes it may output “don’t know”.
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Quantum Mechanics
Postulates: Composite system

Postulate 4

The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if
we have systems numbered 1 through n, and system number i is
prepared in state |ψi 〉, then the joint state of the total system is
|ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉.
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Quantum Mechanics
Postulates: Composite system

We commented earlier that projective measurement is not a
weaker notion when compared with generalised measurements
(even though it may seem so).
We will not argue that (Projective measurement + Unitary
operators) has the same power generalised measurement.

Lemma

Suppose V is a Hilbert space with a subspace W . Suppose
U : W → V is a linear operator that preserves inner products, that is,
for any |w1〉 , |w2〉 ∈W ,

〈w1|U†U |w2〉 = 〈w1|w2〉 .

Show that there exists a unitary operator U ′ : V → V that extends U.
That is, U ′ |w〉 = U |w〉 for all |w〉 ∈W but U ′ is defined on the
entire space V .
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End
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