COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics: Postulates

Quantum Mechanics
 Postulates

- The postulates of quantum mechanics were derived after a long process of trial and error.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system's state space.

Quantum Mechanics
 Postulates

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system's state space.

- Determining the state space of real systems may be complicated and beyond the scope of our discussion.
- We start with a simplest quantum mechanical system (a qubit) that has a two-dimensional state space with $|0\rangle$ and $|1\rangle$ being the orthonormal basis. This system is described by a state vector $|\psi\rangle$ where $\langle\psi \mid \psi\rangle=1$.

Quantum Mechanics
 Postulates

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system's state space.

- Determining the state space of real systems may be complicated and beyond the scope of our discussion.
- We start with a simplest quantum mechanical system (a qubit) that has a two-dimensional state space with $|0\rangle$ and $|1\rangle$ being the orthonormal basis. This system is described by a state vector $|\psi\rangle$ where $\langle\psi \mid \psi\rangle=1$.

Quantum Mechanics
 Postulates

Postulate 2 (Evolution)

The evolution of a closed quantum system is described by a unitary transformation. That is, the state $|\psi\rangle$ of the system at time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the system at time t_{2} by a unitary operator U which only depends on the times t_{1} and $t_{2},\left|\psi^{\prime}\right\rangle=U|\psi\rangle$.

- Doesn't applying a unitary gate contradict with the system being closed?

Quantum Mechanics
 Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\left\{M_{m}\right\}$ of measurement operators. These are operators acting on the state space of the system being measured. The following properties hold:

- The index m refers to the measurement outcomes that may occur in the experiment.
- If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle,
$$

and the state of the system after the measurement is given by

$$
\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}
$$

- The measurement operators satisfy the completeness equation,

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I
$$

Quantum Mechanics

- Projective measurement is a special class of measurements and defines as special case of measurement postulate 3.
- Is this a weaker notion than the generalized measurement postulate? No

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.

Quantum Mechanics

Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Observation: Generalized measurements where the measurement operators are constrained to be orthogonal projectors are the same as projective measurements.
- Exercise: M_{m} are orthogonal projectors if and only if M_{m} are Hermitian and $M_{m} M_{m^{\prime}}=\delta_{m, m^{\prime}} M_{m}$.

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Observation: Generalized measurements where the measurement operators are constrained to be orthogonal projectors are the same as projective measurements.
- Exercise: M_{m} are orthogonal projectors if and only if M_{m} are Hermitian and $M_{m} M_{m^{\prime}}=\delta_{m, m^{\prime}} M_{m}$.
- Observation: Generalized measurements where the measurement operators M_{m} have additional constraints that M_{m} are Hermitian and $M_{m} M_{m^{\prime}}=\delta_{m, m^{\prime}} M_{m}$, are the same as projective measurements.

Quantum Mechanics

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Claim: The average value of the measurement, denoted by $\mathbf{E}[M]$, is given by $\mathbf{E}[M]=\langle\psi| M|\psi\rangle$.

Quantum Mechanics

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Exercise: Suppose we measure state ψ that is an eigenvector corresponding to eigenvalue m of the observable M. What is $\mathbf{E}[M]$?

Quantum Mechanics

Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Describing the observable M is one way to define the projective measurement. Other ways include:
- A set of orthogonal projectors P_{m} satisfying completeness, that is, $\sum_{m} P_{m}=l$. The observable in this case is $\sum_{m} m P_{m}$.
- An orthonormal basis $|m\rangle$ in which case, $P_{m}=|m\rangle\langle m|$.

Quantum Mechanics

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Exercise: Discuss projective measurement of the state $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ w.r.t. observable Z.
- The measurement postulate defines rules for
(1) measurement statistics, and
(2) post-measurement state.
- For certain applications, the post-measurement state is not very important.
- Can you think of such a scenario?
- POVM stands for Positive Operator-Valued Measure. The main ideas are captured in the following points:
- For generalised measurement operators M_{m} and state $|\psi\rangle$, the measurement statistics are given by $p(m)=\langle\psi| M_{m}^{\dagger} M|\psi\rangle$.
- Since we are interested only in the measurement statistics, it will be sufficient to describe the measurement using positive operators

$$
E_{m} \equiv M_{m}^{\dagger} M_{m}
$$

- Observation: $\sum_{m} E_{m}=I$ and $p(m)=\langle\psi| E_{m}|\psi\rangle$.
- Notation: The operators E_{m} are called POVM elements associated with the measurement and set $\left\{E_{m}\right\}$ is known as POVM.
- POVM stands for Positive Operator-Valued Measure. The main ideas are captured in the following points:
- For generalised measurement operators M_{m} and state $|\psi\rangle$, the measurement statistics are given by $p(m)=\langle\psi| M_{m}^{\dagger} M|\psi\rangle$.
- Since we are interested only in the measurement statistics, it will be sufficient to describe the measurement using positive operators

$$
E_{m} \equiv M_{m}^{\dagger} M_{m}
$$

- Observation: $\sum_{m} E_{m}=I$ and $p(m)=\langle\psi| E_{m}|\psi\rangle$.
- Notation: The operators E_{m} are called POVM elements associated with the measurement and set $\left\{E_{m}\right\}$ is known as POVM.
- Exercise: Let E_{m} be an arbitrary set of positive operators such that $\sum_{m} E_{m}=I$. Does there exist measurement operators M_{m} with the same measurement statistics are ones defined by E_{m} ?

Quantum Mechanics

- POVM stands for Positive Operator-Valued Measure. The main ideas are captured in the following points:
- For generalised measurement operators M_{m} and state $|\psi\rangle$, the measurement statistics are given by $p(m)=\langle\psi| M_{m}^{\dagger} M|\psi\rangle$.
- Since we are interested only in the measurement statistics, it will be sufficient to describe the measurement using positive operators

$$
E_{m} \equiv M_{m}^{\dagger} M_{m}
$$

- Observation: $\sum_{m} E_{m}=I$ and $p(m)=\langle\psi| E_{m}|\psi\rangle$.
- Notation: The operators E_{m} are called POVM elements associated with the measurement and set $\left\{E_{m}\right\}$ is known as POVM.
- Exercise: Let E_{m} be an arbitrary set of positive operators such that $\sum_{m} E_{m}=I$. Does there exist measurement operators M_{m} with the same measurement statistics are ones defined by E_{m} ?
- Yes. $M_{m}=\sqrt{E_{m}}$.

Quantum Mechanics

- POVM application: Show that the following POVM

$$
\begin{aligned}
E_{1} & \equiv \frac{\sqrt{2}}{1+\sqrt{2}}|1\rangle\langle 1| \\
E_{2} & \equiv \frac{\sqrt{2}}{1+\sqrt{2}} \frac{(|0\rangle-|1\rangle)(\langle 0|-\langle 1|)}{2} \\
E_{3} & \equiv I-E_{1}-E_{2}
\end{aligned}
$$

helps to distinguish states $|0\rangle$ and $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ with the caveat that sometimes it may output "don't know".

Quantum Mechanics
 Postulates: Composite system

Postulate 4

The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in state $\left|\psi_{i}\right\rangle$, then the joint state of the total system is $\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle$.

Quantum Mechanics
 Postulates: Composite system

- We commented earlier that projective measurement is not a weaker notion when compared with generalised measurements (even though it may seem so).
- We will not argue that (Projective measurement + Unitary operators) has the same power generalised measurement.

Lemma

Suppose V is a Hilbert space with a subspace W. Suppose $U: W \rightarrow V$ is a linear operator that preserves inner products, that is, for any $\left|w_{1}\right\rangle,\left|w_{2}\right\rangle \in W$,

$$
\left\langle w_{1}\right| U^{\dagger} U\left|w_{2}\right\rangle=\left\langle w_{1} \mid w_{2}\right\rangle .
$$

Show that there exists a unitary operator $U^{\prime}: V \rightarrow V$ that extends U. That is, $U^{\prime}|w\rangle=U|w\rangle$ for all $|w\rangle \in W$ but U^{\prime} is defined on the entire space V.

End

