COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics: Postulates

• The postulates of quantum mechanics were derived after a long process of trial and error.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the *state space* of the system. The system is completely described by its *state vector*, which is a unit vector in the system's state space.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the *state space* of the system. The system is completely described by its *state vector*, which is a unit vector in the system's state space.

- Determining the state space of real systems may be complicated and beyond the scope of our discussion.
- We start with a simplest quantum mechanical system (a qubit) that has a two-dimensional state space with $|0\rangle$ and $|1\rangle$ being the orthonormal basis. This system is described by a state vector $|\psi\rangle$ where $\langle\psi|\psi\rangle = 1$.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the *state space* of the system. The system is completely described by its *state vector*, which is a unit vector in the system's state space.

- Determining the state space of real systems may be complicated and beyond the scope of our discussion.
- We start with a simplest quantum mechanical system (a qubit) that has a two-dimensional state space with $|0\rangle$ and $|1\rangle$ being the orthonormal basis. This system is described by a state vector $|\psi\rangle$ where $\langle\psi|\psi\rangle = 1$.

Postulate 2 (Evolution)

The evolution of a *closed* quantum system is described by a *unitary transformation*. That is, the state $|\psi\rangle$ of the system at time t_1 is related to the state $|\psi'\rangle$ of the system at time t_2 by a unitary operator U which only depends on the times t_1 and t_2 , $|\psi'\rangle = U |\psi\rangle$.

• Doesn't applying a unitary gate contradict with the system being closed?

Quantum Mechanics Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\{M_m\}$ of *measurement operators*. These are operators acting on the state space of the system being measured. The following properties hold:

- The index *m* refers to the measurement outcomes that may occur in the experiment.
- If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle ,$$

and the state of the system after the measurement is given by

$$\frac{M_m \ket{\psi}}{\sqrt{\bra{\psi} M_m^{\dagger} M_m \ket{\psi}}}$$

• The measurement operators satisfy the completeness equation,

$$\sum_m M_m^{\dagger} M_m = I$$

- Projective measurement is a special class of measurements and defines as special case of measurement postulate 3.
 - $\bullet\,$ Is this a weaker notion than the generalized measurement postulate? No

- The observable has a spectral decomposition $M = \sum_m mP_m$, where P_m is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, *m*, of the observable.
- The probability of measuring outcome being *m* on measuring state $|\psi\rangle$ is given by $p(m) = \langle \psi | P_m | \psi \rangle$.
- Given that *m* is the outcome of the measurement, the post-measurement state is $\frac{P_m|\psi\rangle}{\sqrt{p(m)}}$.

- The observable has a spectral decomposition $M = \sum_{m} mP_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, *m*, of the observable.
- The probability of measuring outcome being *m* on measuring state $|\psi\rangle$ is given by $p(m) = \langle \psi | P_m | \psi \rangle$.
- Given that *m* is the outcome of the measurement, the post-measurement state is $\frac{P_m|\psi\rangle}{\sqrt{\rho(m)}}$.
- <u>Observation</u>: Generalized measurements where the measurement operators are constrained to be orthogonal projectors are the same as projective measurements.
- <u>Exercise</u>: M_m are orthogonal projectors if and only if M_m are Hermitian and $M_m M_{m'} = \delta_{m,m'} M_m$.

Quantum Mechanics Postulates: Projective measurements

Projective measurements

- The observable has a spectral decomposition $M = \sum_m m P_m$, where P_m is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, *m*, of the observable.
- The probability of measuring outcome being *m* on measuring state $|\psi\rangle$ is given by $p(m) = \langle \psi | P_m | \psi \rangle$.
- Given that *m* is the outcome of the measurement, the post-measurement state is $\frac{P_m|\psi\rangle}{\sqrt{p(m)}}$.
- <u>Observation</u>: Generalized measurements where the measurement operators are constrained to be orthogonal projectors are the same as projective measurements.
- Exercise: M_m are orthogonal projectors if and only if M_m are Hermitian and $M_m M_{m'} = \delta_{m,m'} M_m$.
- <u>Observation</u>: Generalized measurements where the measurement operators M_m have additional constraints that M_m are Hermitian and $M_m M_{m'} = \delta_{m,m'} M_m$, are the same as projective measurements.

- The observable has a spectral decomposition $M = \sum_{m} mP_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, *m*, of the observable.
- The probability of measuring outcome being *m* on measuring state $|\psi\rangle$ is given by $p(m) = \langle \psi | P_m | \psi \rangle$.
- Given that *m* is the outcome of the measurement, the post-measurement state is $\frac{P_m|\psi\rangle}{\sqrt{\rho(m)}}$.
- <u>Claim</u>: The average value of the measurement, denoted by $\mathbf{E}[M]$, is given by $\mathbf{E}[M] = \langle \psi | M | \psi \rangle$.

- The observable has a spectral decomposition $M = \sum_m mP_m$, where P_m is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, *m*, of the observable.
- The probability of measuring outcome being *m* on measuring state $|\psi\rangle$ is given by $p(m) = \langle \psi | P_m | \psi \rangle$.
- Given that *m* is the outcome of the measurement, the post-measurement state is $\frac{P_m|\psi\rangle}{\sqrt{\rho(m)}}$.
- Exercise: Suppose we measure state ψ that is an eigenvector corresponding to eigenvalue m of the observable M. What is E[M]?

- The observable has a spectral decomposition $M = \sum_{m} mP_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, *m*, of the observable.
- The probability of measuring outcome being *m* on measuring state $|\psi\rangle$ is given by $p(m) = \langle \psi | P_m | \psi \rangle$.
- Given that *m* is the outcome of the measurement, the post-measurement state is $\frac{P_m|\psi\rangle}{\sqrt{p(m)}}$.
- Describing the observable *M* is one way to define the projective measurement. Other ways include:
 - A set of orthogonal projectors P_m satisfying completeness, that is, $\sum_m P_m = I$. The observable in this case is $\sum_m mP_m$.
 - An orthonormal basis $|m\rangle$ in which case, $P_m = |m\rangle \langle m|$.

- The observable has a spectral decomposition $M = \sum_{m} mP_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, *m*, of the observable.
- The probability of measuring outcome being *m* on measuring state $|\psi\rangle$ is given by $p(m) = \langle \psi | P_m | \psi \rangle$.
- Given that *m* is the outcome of the measurement, the post-measurement state is $\frac{P_m|\psi\rangle}{\sqrt{\rho(m)}}$.
- <u>Exercise</u>: Discuss projective measurement of the state $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ w.r.t. observable Z.

- The measurement postulate defines rules for
 - measurement statistics, and
 - Ø post-measurement state.
- For certain applications, the post-measurement state is not very important.
 - Can you think of such a scenario?
- POVM stands for Positive Operator-Valued Measure. The main ideas are captured in the following points:
 - For generalised measurement operators M_m and state $|\psi\rangle$, the measurement statistics are given by $p(m) = \langle \psi | M_m^{\dagger} M | \psi \rangle$.
 - Since we are interested only in the measurement statistics, it will be sufficient to describe the measurement using positive operators

$$E_m \equiv M_m^{\dagger} M_m$$

- <u>Observation</u>: $\sum_{m} E_{m} = I$ and $p(m) = \langle \psi | E_{m} | \psi \rangle$.
- <u>Notation</u>: The operators E_m are called POVM elements associated with the measurement and set $\{E_m\}$ is known as POVM.

- POVM stands for Positive Operator-Valued Measure. The main ideas are captured in the following points:
 - For generalised measurement operators M_m and state $|\psi\rangle$, the measurement statistics are given by $p(m) = \langle \psi | M_m^{\dagger} M | \psi \rangle$.
 - Since we are interested only in the measurement statistics, it will be sufficient to describe the measurement using positive operators

$$E_m \equiv M_m^{\dagger} M_m$$

- <u>Observation</u>: $\sum_{m} E_{m} = I$ and $p(m) = \langle \psi | E_{m} | \psi \rangle$.
- <u>Notation</u>: The operators E_m are called POVM elements associated with the measurement and set $\{E_m\}$ is known as POVM.
- Exercise: Let E_m be an arbitrary set of positive operators such that $\sum_m E_m = I$. Does there exist measurement operators M_m with the same measurement statistics are ones defined by E_m ?

- POVM stands for Positive Operator-Valued Measure. The main ideas are captured in the following points:
 - For generalised measurement operators M_m and state $|\psi\rangle$, the measurement statistics are given by $p(m) = \langle \psi | M_m^{\dagger} M | \psi \rangle$.
 - Since we are interested only in the measurement statistics, it will be sufficient to describe the measurement using positive operators

$$E_m \equiv M_m^{\dagger} M_m$$

- Observation: $\sum_{m} E_{m} = I$ and $p(m) = \langle \psi | E_{m} | \psi \rangle$.
- <u>Notation</u>: The operators E_m are called POVM elements associated with the measurement and set $\{E_m\}$ is known as POVM.
- <u>Exercise</u>: Let E_m be an arbitrary set of positive operators such that $\sum_m E_m = I$. Does there exist measurement operators M_m with the same measurement statistics are ones defined by E_m ?

• Yes.
$$M_m = \sqrt{E_m}$$
.

Quantum Mechanics Postulates: POVM measurements

POVM application: Show that the following POVM

$$E_{1} \equiv \frac{\sqrt{2}}{1+\sqrt{2}} |1\rangle \langle 1|$$

$$E_{2} \equiv \frac{\sqrt{2}}{1+\sqrt{2}} \frac{(|0\rangle - |1\rangle)(\langle 0| - \langle 1|)}{2}$$

$$E_{3} \equiv I - E_{1} - E_{2}$$

helps to distinguish states $|0\rangle$ and $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ with the caveat that sometimes it may output "don't know".

Postulate 4

The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through *n*, and system number *i* is prepared in state $|\psi_i\rangle$, then the joint state of the total system is $|\psi_1\rangle \otimes |\psi_2\rangle \otimes ... \otimes |\psi_n\rangle$.

- We commented earlier that projective measurement is not a weaker notion when compared with generalised measurements (even though it may seem so).
- We will not argue that (Projective measurement + Unitary operators) has the same power generalised measurement.

Lemma

Suppose V is a Hilbert space with a subspace W. Suppose $U: W \to V$ is a linear operator that preserves inner products, that is, for any $|w_1\rangle$, $|w_2\rangle \in W$,

$$\langle w_1 | U^{\dagger} U | w_2 \rangle = \langle w_1 | w_2 \rangle.$$

Show that there exists a unitary operator $U' : V \to V$ that extends U. That is, $U' |w\rangle = U |w\rangle$ for all $|w\rangle \in W$ but U' is defined on the entire space V.

End

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information