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Quantum Mechanics

Linear algebra: Adjoints and Hermitian operators

Spectral Decomposition Theorem

Any normal operator M on a vector space V is a diagonalizable with
respect to some orthonormal basis for V. Conversely, any
diagononalizable operator is normal.

o Exercise: Show that a normal matrix is Hermitian if and only if it

has real eigenvalues.

Unitary matrix: A matrix U is called unitary if UUT = UTU = I.

Unitary operator: An operator U is unitary if UUT = UTU = |.

Exercise: Show that unitary operators preserve inner products.

Exercise: Let |v;) be any orthonormal basis set and let

|w;) = U|v;). Then |w;) is an orthonormal basis set. Moreover,

U=2wi) (vil.

o Exercise: If |v;) and |w;) are two orthonormal basis sets, then
U=73";|w)(vi| is a unitary operator.

o Exercise: Show that all the eigenvalues of a unitary matrix have
modulus 1. This means that they can be written as e’ for some
real 6.
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Juantum Mechanics

near algebra: Adjoints and Hermitian operators

o Positive operator: An operator A is said to be a positive operator
if for every vector |v), (|v),A|v)) is a real non-negative number.

o Positive definite operator: An operator A is said to be a positive
operator if for every vector |v), (|v),A|v)) is a real number
strictly greater than 0.
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uantum Mechanics

ear algebra: Adjoints and Hermitian operators

o Positive operator: An operator A is said to be a positive operator
if for every vector |v), (|v),A|v)) is a real non-negative number.

o Positive definite operator: An operator A is said to be a positive
operator if for every vector |v), (|v),A|v)) is a real number

strictly greater than 0.
o Exercises:
o Show that a positive operator is necessarily Hermitian.
o Show that the eigenvectors of a Hermitian operator with different
eigenvalues are necessarily orthogonal.
o Show that for any operator A, ATA is positive.
o Show that the eigenvalues of a projector P are all either 0 or 1.
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antum Mechanics
ear algebra: Tensor products

@ The tensor product is a way of putting vector spaces together
to form larger vector spaces.

o Suppose V and W are Hilbert spaces of dimension m and n
respectively, then V ® W denotes an mn-dimensional vector
space.

o The elements of V ® W are linear combinations of tensor
products |v) ® |w) of elements |v) € V and |w) € W.

o If |i)'s and |})'s are orthonormal bases for V and W
respectively, then |/) ® |j)'s are orthonormal basis for V @ W.

o |v) ® |w) is also written as |vw) ,|v)|w), and |v, w).

o Example: If V is a two-dimensional vector space with basis
{]0), 1)}, then |0) ®|0) + |1) ® |1) is an element of V ® V.

o Notation: [1/)®* means |1)) tensored with itself k times.
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JQuantum Mechanics
inear algebra: Tensor products
o Some properties of tensor products:
o For any arbitrary scalar z and elements |v) € V and |w) € W:
Z(|v) @ [w)) = (z|v)) @ [w) = |v) © (z|w)).
o For arbitrary |vi),|w) € V and |w) € W,
(v) + [v2)) ® [w) = |v1) @ |[w) + |v2) @ |w) .
o For arbitrary |v) € V and |w1), |wa) € W,

v) @ (Iwi) +[w2)) = [v) @ [w) + [v) © [wa) .
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Juantum Mechanics

near algebra: Tensor products

o Linear operators on V ® W: Let A and B be linear operators on
V and W respectively. Then A® B denotes a linear operator on
V @ W defined as:

(A B)(Jv) ® |w)) = Alv) ® Blw).

Furthermore, the following ensures linearity:

(A® B) (Za,v, ® |w;) > => aiAlv) ® Blw;).

i

o Let A: V — V' and B: W — W’ be linear operators. An
arbitrary linear operator C mapping V@ W to V' @ W' can be
represented as a linear combination:

C= Z CiA; ® B;
i
where by definition:

(ZC,‘A,‘@B;) ) ® |w) = ZC,A |v) ® Bj|w).
i



Juantum Mechanics

inear algebra: Tensor products

o Linear operators on V ® W: Let A and B be linear operators on
V and W respectively. Then A® B denotes a linear operator on
V @ W defined as:

(A2 B)(lv) @ |w)) = Alv) @ Blw).
Furthermore, the following ensures linearity:
(A B) (Z ai|vi) ® \w,->> =Y aAlv) @ Blw).
i i
o Llet A: V — V' and B: W — W’ be linear operators. An

arbitrary linear operator C mapping V @ W to V' @ W' can be
represented as a linear combination:

CZZC,’A,’@B;
i

where by definition:
(225 6iAi @ Bi) [v) ® [w) = 3 ciAi[v) © Bi |w).
@ The inner product on V ® W is defined as:

Sailvy@|w), > by e |w) | =D arb (vilv)) (wj|w)).
i j i
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Juantum Mechanics
near algebra: Tensor products

o Matrix representation: The matrix representation for A® B is
called the Kronecker product. Let A be a m x n matrix and B be
a p X g matrix. Then the matrix representation of A® B is given

as:
AuB ApB ... AirB
A B = A-21 A2.28 A2-,,B
AmB AmB ... AmnnB

1 2
o Example: What is [2] ® {3}
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Juantum Mechanics
near algebra: Tensor products

o Matrix representation: The matrix representation for A® B is
called the Kronecker product. Let A be a m x n matrix and B be
a p X g matrix. Then the matrix representation of A® B is given

. AnB ApB ... AB
o A:21 A2:28 A2:,,B
AmB AmB ... AmB
2
o Example: What is B]@E? ;
6
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Juantum Mechanics
near algebra: Tensor products

o Exercises:

o Show that
(A®B)* = A*@B*;(A®B)T = AT®BT; (Ao B)' = AT BT.

o Show that the tensor product of two unitary operators is
unitary.

o Show that the tensor product of two Hermitian operators is
Hermitian.

o Show that the tensor product of two positive operators is
postive.

o Show that the tensor product of two projectors is a projector.
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Juantum Mechanics
near algebra: Operator functions

@ One can define matrix functions on normal matrices by using
the following construction: Let A=)"_ala) (a| be a spectral
decomposition for a normal operator A. We define:

f(A)=)_f(a)la) (al

0
o Exercise: Show that exp(0Z) = [eo 609}

o Exercise: Find the square root of the matrix [g ﬂ
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Quantum Mechanics
Postulates

@ The postulates of quantum mechanics were derived after a
long process of trial and error.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector
space with inner product (Hilbert space) known as the state space
of the system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.
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Quantum Mechanics
Postulates

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space
with inner product (Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which
is a unit vector in the system'’s state space.

o Determining the state space of real systems may be complicated
and beyond the scope of our discussion.

o We start with a simplest quantum mechanical system (a qubit)
that has a two-dimensional state space with |0) and |1) being the
orthonormal basis. This system is described by a state vector [1))

where (Y1) = 1.
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Quantum Mechanics
Postulates

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space
with inner product (Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which
is a unit vector in the system'’s state space.

o Determining the state space of real systems may be complicated
and beyond the scope of our discussion.

o We start with a simplest quantum mechanical system (a qubit)
that has a two-dimensional state space with |0) and |1) being the
orthonormal basis. This system is described by a state vector [1))

where (Y1) = 1.
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Quantum Mechanics
Postulates

Postulate 2 (Evolution)

The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |¢)) of the system at time t; is
related to the state [¢’) of the system at time t, by a unitary operator
U which only depends on the times t; and to, [¢') = U [4).

o Doesn't applying a unitary gate contradict with the system being
closed?
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {M,,} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

o The index m refers to the measurement outcomes that may occur
in the experiment.

o If the state of the system is |¢)) immediately before the
measurement, then the probability that the result m occurs is
given by

p(m) = (Y| MM [45) ,

and the state of the system after the measurement is given by

My [9))
(%] MM, |)

o The measurement operators satisfy the completeness equation,

ZM,T”Mmzl
m
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {M,,} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

o The index m refers to the measurement outcomes that may occur
in the experiment.

o If the state of the system is |¢)) immediately before the
measurement, then the probability that the result m occurs is

given by p(m) = (Y| MMy, |1}, and the state of the system
Mim )

after the measurement is given by ——
V(@M M) .
o The measurement operators satisfy the completeness equation,

S MMy, = 1.

o Exercise: Show that ), p(m)=1.
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {Mp,} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

o The index m refers to the measurement outcomes that may occur
in the experiment.

o If the state of the system is |1)) immediately before the
measurement, then the probability that the result m occurs is

given by p(m) = (| MM, |1}, and the state of the system
after the measurement is given by M’”—TW
7 NV @WIMEM ) _
o The measurement operators satisfy the completeness equation,

S MMy, = 1.

o Exercise: Consider a single-qubit scenario with measurement
operators My = |0) (0] and My = |1) (1|. Compare the above
properties with what we did in earlier lectures.
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {M,} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:
o The index m refers to the measurement outcomes that may occur
in the experiment.
o If the state of the system is |¢)) immediately before the
measurement, then the probability that the result m occurs is
given by p(m) = (1| MM, |1}, and the state of the system

after the measurement is given by Mﬂl/))
) (3| M Mem 1)) .
o The measurement operators satisfy the completeness equation,

S MEM,, = 1.

y

o Cascaded measurements: Suppose {L;} and {M,} are two sets of
measurement operators. Show that a measurement defined by the
measurement operators {L,} followed by {M,} is physically
equivalent to a single measurement defined by the measurement
operators {Nj,} where Ny, = MLy,
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Quantum Mechanics
Postulates

o We hinted earlier that distinguishing non-orthogonal states may
not be possible. Now that we understands measurements, let us
try to formulate and prove.

o The ability to distinguish quantum states can be formalised as the
following game between two parties:

Distinguishing quantum states

Alice chooses a state |1);) from a fixed set of states |1), ..., |¥n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 1: There is a winning strategy for Bob if |11}, ..., [1,) are
orthonormal states.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |1);) from a fixed set of states |)1), ..., |¥n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 1: There is a winning strategy for Bob if |¢1), ..., |¢,) are
orthonormal states.
o Define measurement operators M; = |1;) (.
o Define My = /1 —>_7_; M;. Note that since /| — > 7, M; is a
positive operator, square root is well defined.
o Claim 1.1: My, My, ..., M,, satisfy completeness relation.
o Claim 1.2: Given state |¢);), p(i) = 1.
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |t¢);) from a fixed set of states [1) , ..., [¢n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

o Assume n =2 and let |¢1) and |¢)2) be non-orthogonal.

o The most general strategy for Bob is to measure using operators
{Mm} and use a function f : {1,..., m} — {1,2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.

o Let =Y ¢;)—i MIM; for i =1,2.

o Since this is a winning strategy for Bob, we have:

(1] Ex Y1) = 1; (o] B2 |1h2) =1




Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state [¢/;) from a fixed set of states [¢)1) , ..., |n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

o Assume n =2 and let |¢)1) and |2) be non-orthogonal.

o The most general strategy for Bob is to measure using operators
{Mp,} and use a function f : {1,...,m} — {1,2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.

o Let E; =Y.y MIM; for i = 1,2.

o Since this is a winning strategy for Bob, we have:

(1| Ex |¢1) = L; (2| Bz [9h2) =1

o Claim 2.1: /E3|11) =0
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state [1);) from a fixed set of states |1)1),...., [1n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

o Assume n =2 and let |11) and |i2) be non-orthogonal.

o The most general strategy for Bob is to measure using operators
{My} and use a function f : {1,...,m} — {1,2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.

o Let £ = ¢y MIM; for i = 1,2.

o Since this is a winning strategy for Bob, we have:

(1] Ex [th1) = 1; (o] Ex Jtho) =1

o Claim 2.1: \/E3[¢h1) =0

o Claim 2.2: Decompose |t)2) = a|th1) + B |¢), where |¢) is
orthonormal to |t/1). Then |3| < 1.
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state [1;) from a fixed set of states [i)1) , ..., [t)n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

o Assume n =2 and let |11) and |1)2) be non-orthogonal.

o The most general strategy for Bob is to measure using operators
{Mpm} and use a function f : {1,...,m} — {1,2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.

o Let £ = Y. )—i MIM; for i =1,2.

o Since this is a winning strategy for Bob, we have:

(tha] Ex 1) = 1; (4ha| Bz o) =1

o Claim 2.1: V/E; [¢h1) =0

o Claim 2.2: Decompose [1)2) = o [t1) + [ |¢), where |¢) is
orthonormal to [41). Then |3| < 1.

o Claim 2.3: (4| Bz [th2) = |BI? (0| B2 |¢) < |B|* < L.

o The above contradicts with the fourth bullet item.
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