COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics: Linear Algebra

Quantum Mechanics

Linear algebra: Adjoints and Hermitian operators

Spectral Decomposition Theorem

Any normal operator M on a vector space V is a diagonalizable with respect to some orthonormal basis for V. Conversely, any diagononalizable operator is normal.

- <u>Exercise</u>: Show that a normal matrix is Hermitian if and only if it has real eigenvalues.
- Unitary matrix: A matrix U is called unitary if $UU^{\dagger} = U^{\dagger}U = I$.
- Unitary operator: An operator U is unitary if $UU^{\dagger} = U^{\dagger}U = I$.
- Exercise: Show that unitary operators preserve inner products.
- Exercise: Let $|v_i\rangle$ be any orthonormal basis set and let $|w_i\rangle = U|v_i\rangle$. Then $|w_i\rangle$ is an orthonormal basis set. Moreover, $U = \sum_i |w_i\rangle \langle v_i|$.
- Exercise: If $|v_i\rangle$ and $|w_i\rangle$ are two orthonormal basis sets, then $U \equiv \sum_i |w_i\rangle \langle v_i|$ is a unitary operator.
- Exercise: Show that all the eigenvalues of a unitary matrix have modulus 1. This means that they can be written as $e^{i\theta}$ for some real θ .

Quantum Mechanics

Linear algebra: Adjoints and Hermitian operators

- Positive operator: An operator A is said to be a positive operator if for every vector $|v\rangle$, $(|v\rangle, A|v\rangle)$ is a real non-negative number.
- Positive definite operator: An operator A is said to be a positive operator if for every vector $|v\rangle$, $(|v\rangle, A|v\rangle)$ is a real number strictly greater than 0.

- Positive operator: An operator A is said to be a positive operator if for every vector $|v\rangle$, $(|v\rangle, A|v\rangle)$ is a real non-negative number.
- Positive definite operator: An operator A is said to be a positive operator if for every vector $|v\rangle$, $(|v\rangle, A|v\rangle)$ is a real number strictly greater than 0.
- Exercises:
 - Show that a positive operator is necessarily Hermitian.
 - Show that the eigenvectors of a Hermitian operator with different eigenvalues are necessarily orthogonal.
 - Show that for any operator A, $A^{\dagger}A$ is positive.
 - ullet Show that the eigenvalues of a projector P are all either 0 or 1.

- The tensor product is a way of putting vector spaces together to form larger vector spaces.
 - Suppose V and W are Hilbert spaces of dimension m and n respectively, then $V \otimes W$ denotes an mn-dimensional vector space.
 - The elements of $V \otimes W$ are linear combinations of tensor products $|v\rangle \otimes |w\rangle$ of elements $|v\rangle \in V$ and $|w\rangle \in W$.
 - If $|i\rangle$'s and $|j\rangle$'s are orthonormal bases for V and W respectively, then $|i\rangle\otimes|j\rangle$'s are orthonormal basis for $V\otimes W$.
 - $|v\rangle \otimes |w\rangle$ is also written as $|vw\rangle, |v\rangle |w\rangle$, and $|v,w\rangle$.
 - Example: If V is a two-dimensional vector space with basis $\overline{\{|0\rangle,|1\rangle}$, then $|0\rangle\otimes|0\rangle+|1\rangle\otimes|1\rangle$ is an element of $V\otimes V$.
- Notation: $|\psi\rangle^{\otimes k}$ means $|\psi\rangle$ tensored with itself k times.

- Some properties of tensor products:
 - For any arbitrary scalar z and elements $|v\rangle \in V$ and $|w\rangle \in W$:

$$z(|v\rangle \otimes |w\rangle) = (z|v\rangle) \otimes |w\rangle = |v\rangle \otimes (z|w\rangle).$$

ullet For arbitrary $\ket{v_1},\ket{v_2}\in V$ and $\ket{w}\in W$,

$$(|v_1\rangle+|v_2\rangle)\otimes|w\rangle=|v_1\rangle\otimes|w\rangle+|v_2\rangle\otimes|w\rangle.$$

ullet For arbitrary $\ket{v} \in V$ and $\ket{w_1}, \ket{w_2} \in W$,

$$|v\rangle\otimes(|w_1\rangle+|w_2\rangle)=|v\rangle\otimes|w_1\rangle+|v\rangle\otimes|w_2\rangle.$$

Linear algebra: Tensor products

• Linear operators on $V \otimes W$: Let A and B be linear operators on \overline{V} and W respectively. Then $A \otimes B$ denotes a linear operator on $V \otimes W$ defined as:

$$(A \otimes B)(|v\rangle \otimes |w\rangle) = A|v\rangle \otimes B|w\rangle.$$

Furthermore, the following ensures linearity:

$$(A \otimes B) \left(\sum_{i} a_{i} | v_{i} \rangle \otimes | w_{i} \rangle \right) = \sum_{i} a_{i} A | v_{i} \rangle \otimes B | w_{i} \rangle.$$

• Let $A:V\to V'$ and $B:W\to W'$ be linear operators. An arbitrary linear operator C mapping $V\otimes W$ to $V'\otimes W'$ can be represented as a linear combination:

$$C=\sum_i c_i A_i \otimes B_i$$

where by definition:

$$\left(\sum_{i} c_{i} A_{i} \otimes B_{i}\right) |v\rangle \otimes |w\rangle \equiv \sum_{i} c_{i} A_{i} |v\rangle \otimes B_{i} |w\rangle.$$

Quantum Mechanics

Linear algebra: Tensor products

• Linear operators on $V \otimes W$: Let A and B be linear operators on \overline{V} and W respectively. Then $A \otimes B$ denotes a linear operator on $V \otimes W$ defined as:

$$(A \otimes B)(|v\rangle \otimes |w\rangle) = A|v\rangle \otimes B|w\rangle.$$

Furthermore, the following ensures linearity:

$$(A \otimes B) \left(\sum_{i} a_{i} | v_{i} \rangle \otimes | w_{i} \rangle \right) = \sum_{i} a_{i} A | v_{i} \rangle \otimes B | w_{i} \rangle.$$

• Let $A:V\to V'$ and $B:W\to W'$ be linear operators. An arbitrary linear operator C mapping $V\otimes W$ to $V'\otimes W'$ can be represented as a linear combination:

$$C=\sum_i c_i A_i \otimes B_i$$

where by definition:

$$(\sum_i c_i A_i \otimes B_i) |v\rangle \otimes |w\rangle \equiv \sum_i c_i A_i |v\rangle \otimes B_i |w\rangle.$$

• The inner product on $V \otimes W$ is defined as:

$$\left(\sum_{i}a_{i}\left|v_{i}\right\rangle \otimes\left|w_{i}\right\rangle ,\sum_{j}b_{j}\left|v_{j}'\right\rangle \otimes\left|w_{j}'\right\rangle \right)\equiv\sum_{ij}a_{i}^{*}b_{j}\left\langle v_{i}\middle|v_{j}'\right\rangle \left\langle w_{j}\middle|w_{j}'\right\rangle .$$

Quantum Mechanics Linear algebra: Tensor products

• Matrix representation: The matrix representation for $A \otimes B$ is called the Kronecker product. Let A be a $m \times n$ matrix and B be a $p \times q$ matrix. Then the matrix representation of $A \otimes B$ is given as:

$$A \otimes B \equiv \begin{bmatrix} A_{11}B & A_{12}B & \dots & A_{1n}B \\ A_{21} & A_{22}B & \dots & A_{2n}B \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1}B & A_{m2}B & \dots & A_{mn}B \end{bmatrix}$$

• Example: What is $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes \begin{bmatrix} 2 \\ 3 \end{bmatrix}$?

Quantum Mechanics Linear algebra: Tensor products

• Matrix representation: The matrix representation for $A \otimes B$ is called the Kronecker product. Let A be a $m \times n$ matrix and B be a $p \times q$ matrix. Then the matrix representation of $A \otimes B$ is given as:

$$A \otimes B \equiv \begin{bmatrix} A_{11}B & A_{12}B & \dots & A_{1n}B \\ A_{21} & A_{22}B & \dots & A_{2n}B \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1}B & A_{m2}B & \dots & A_{mn}B \end{bmatrix}$$

• Example: What is $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes \begin{bmatrix} 2 \\ 3 \end{bmatrix}$? $\begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \end{bmatrix}$

• Exercises:

- Show that $(A \otimes B)^* = A^* \otimes B^*; (A \otimes B)^T = A^T \otimes B^T; (A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}.$
- Show that the tensor product of two unitary operators is unitary.
- Show that the tensor product of two Hermitian operators is Hermitian.
- Show that the tensor product of two positive operators is postive.
- Show that the tensor product of two projectors is a projector.

• One can define matrix functions on normal matrices by using the following construction: Let $A = \sum_a a |a\rangle \langle a|$ be a spectral decomposition for a normal operator A. We define:

$$f(A) = \sum_{a} f(a) |a\rangle \langle a|$$

- Exercise: Show that $exp(\theta Z) = \begin{bmatrix} e^{\theta} & 0 \\ 0 & e^{-\theta} \end{bmatrix}$.
- Exercise: Find the square root of the matrix $\begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}$.

 The postulates of quantum mechanics were derived after a long process of trial and error.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the *state space* of the system. The system is completely described by its *state vector*, which is a unit vector in the system's state space.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the *state space* of the system. The system is completely described by its *state vector*, which is a unit vector in the system's state space.

- Determining the state space of real systems may be complicated and beyond the scope of our discussion.
- We start with a simplest quantum mechanical system (a qubit) that has a two-dimensional state space with $|0\rangle$ and $|1\rangle$ being the orthonormal basis. This system is described by a state vector $|\psi\rangle$ where $\langle\psi|\psi\rangle=1.$

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the *state space* of the system. The system is completely described by its *state vector*, which is a unit vector in the system's state space.

- Determining the state space of real systems may be complicated and beyond the scope of our discussion.
- We start with a simplest quantum mechanical system (a qubit) that has a two-dimensional state space with $|0\rangle$ and $|1\rangle$ being the orthonormal basis. This system is described by a state vector $|\psi\rangle$ where $\langle\psi|\psi\rangle=1.$

Postulate 2 (Evolution)

The evolution of a *closed* quantum system is described by a *unitary transformation*. That is, the state $|\psi\rangle$ of the system at time t_1 is related to the state $|\psi'\rangle$ of the system at time t_2 by a unitary operator U which only depends on the times t_1 and t_2 , $|\psi'\rangle = U |\psi\rangle$.

 Doesn't applying a unitary gate contradict with the system being closed?

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\{M_m\}$ of measurement operators. These are operators acting on the state space of the system being measured. The following properties hold:

- The index m refers to the measurement outcomes that may occur in the experiment.
- \bullet If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle,$$

and the state of the system after the measurement is given by

$$\frac{\mathit{M_m}\ket{\psi}}{\sqrt{\bra{\psi} \mathit{M}_m^\dagger \mathit{M}_m \ket{\psi}}}$$

• The measurement operators satisfy the completeness equation,

$$\sum_m M_m^\dagger M_m = I$$

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\{M_m\}$ of measurement operators. These are operators acting on the state space of the system being measured. The following properties hold:

- The index m refers to the measurement outcomes that may occur in the experiment.
- If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by $p(m) = \langle \psi | \, M_m^\dagger M_m \, | \psi \rangle$, and the state of the system after the measurement is given by $\frac{M_m |\psi\rangle}{\sqrt{\langle \psi | M_m^\dagger M_m |\psi\rangle}}$
- The measurement operators satisfy the *completeness equation*, $\sum_m M_m^{\dagger} M_m = I$.
- Exercise: Show that $\sum_{m} p(m) = 1$.

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\{M_m\}$ of measurement operators. These are operators acting on the state space of the system being measured. The following properties hold:

- The index m refers to the measurement outcomes that may occur in the experiment.
- If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by $p(m) = \langle \psi | M_m^\dagger M_m | \psi \rangle$, and the state of the system after the measurement is given by $\frac{M_m |\psi\rangle}{\sqrt{\langle \psi | M_m^\dagger M_m |\psi\rangle}}$
- The measurement operators satisfy the *completeness equation*, $\sum_m M_m^{\dagger} M_m = I.$
- Exercise: Consider a single-qubit scenario with measurement operators $M_0 = |0\rangle \langle 0|$ and $M_1 = |1\rangle \langle 1|$. Compare the above properties with what we did in earlier lectures.

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\{M_m\}$ of measurement operators. These are operators acting on the state space of the system being measured. The following properties hold:

- The index m refers to the measurement outcomes that may occur in the experiment.
- If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by $p(m) = \langle \psi | \, M_m^\dagger M_m \, | \psi \rangle$, and the state of the system after the measurement is given by $\frac{M_m |\psi\rangle}{\sqrt{\langle \psi | M_m^\dagger M_m |\psi\rangle}}$
- The measurement operators satisfy the *completeness equation*, $\sum_m M_m^{\dagger} M_m = I$.
- <u>Cascaded measurements</u>: Suppose $\{L_I\}$ and $\{M_m\}$ are two sets of measurement operators. Show that a measurement defined by the measurement operators $\{L_I\}$ followed by $\{M_m\}$ is physically equivalent to a single measurement defined by the measurement operators $\{N_{Im}\}$ where $N_{Im}=M_mL_I$.

- We hinted earlier that distinguishing non-orthogonal states may not be possible. Now that we understands measurements, let us try to formulate and prove.
- The ability to distinguish quantum states can be formalised as the following game between two parties:

Distinguishing quantum states

Alice chooses a state $|\psi_i\rangle$ from a fixed set of states $|\psi_1\rangle$,, $|\psi_n\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

- Claim 1: There is a winning strategy for Bob if $|\psi_1\rangle$, ..., $|\psi_n\rangle$ are orthonormal states.
- <u>Claim 2</u>: There is no winning strategy for Bob if there are non-orthogonal states.

Alice chooses a state $|\psi_i\rangle$ from a fixed set of states $|\psi_1\rangle$,, $|\psi_n\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

- Claim 1: There is a winning strategy for Bob if $|\psi_1\rangle$, ..., $|\psi_n\rangle$ are orthonormal states.
 - Define measurement operators $M_i = |\psi_i\rangle \langle \psi_i|$.
 - Define $M_0 = \sqrt{I \sum_{i=1}^n M_i}$. Note that since $I \sum_{i=1}^n M_i$ is a positive operator, square root is well defined.
 - Claim 1.1: $M_0, M_1, ..., M_n$ satisfy completeness relation.
 - Claim 1.2: Given state $|\psi_i\rangle$, p(i)=1.

Alice chooses a state $|\psi_i\rangle$ from a fixed set of states $|\psi_1\rangle$,...., $|\psi_n\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

 <u>Claim 2</u>: There is no winning strategy for Bob if there are non-orthogonal states.

- Assume n=2 and let $|\psi_1\rangle$ and $|\psi_2\rangle$ be non-orthogonal.
- The most general strategy for Bob is to measure using operators $\{M_m\}$ and use a function $f:\{1,...,m\} \rightarrow \{1,2\}$ to return an answer to Alice. Suppose for the sake of contradiction, there exists such a winning strategy for Bob.
- Let $E_i = \sum_{j:f(i)=i} M_i^{\dagger} M_j$ for i = 1, 2.
- Since this is a winning strategy for Bob, we have:

$$\langle \psi_1 | E_1 | \psi_1 \rangle = 1; \langle \psi_2 | E_2 | \psi_2 \rangle = 1$$

Alice chooses a state $|\psi_i\rangle$ from a fixed set of states $|\psi_1\rangle$,, $|\psi_n\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

 <u>Claim 2</u>: There is no winning strategy for Bob if there are non-orthogonal states.

- Assume n=2 and let $|\psi_1\rangle$ and $|\psi_2\rangle$ be non-orthogonal.
- The most general strategy for Bob is to measure using operators $\{M_m\}$ and use a function $f:\{1,...,m\} \rightarrow \{1,2\}$ to return an answer to Alice. Suppose for the sake of contradiction, there exists such a winning strategy for Bob.
- Let $E_i = \sum_{i:f(i)=i} M_i^{\dagger} M_j$ for i=1,2.
- Since this is a winning strategy for Bob, we have: $\langle \psi_1 | E_1 | \psi_1 \rangle = 1$; $\langle \psi_2 | E_2 | \psi_2 \rangle = 1$
- Claim 2.1: $\sqrt{E_2} |\psi_1\rangle = 0$

Alice chooses a state $|\psi_i\rangle$ from a fixed set of states $|\psi_1\rangle$,, $|\psi_n\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

 <u>Claim 2</u>: There is no winning strategy for Bob if there are non-orthogonal states.

- Assume n=2 and let $|\psi_1\rangle$ and $|\psi_2\rangle$ be non-orthogonal.
- The most general strategy for Bob is to measure using operators $\{M_m\}$ and use a function $f:\{1,...,m\} \rightarrow \{1,2\}$ to return an answer to Alice. Suppose for the sake of contradiction, there exists such a winning strategy for Bob.
- Let $E_i = \sum_{i:f(i)=i} M_i^{\dagger} M_j$ for i=1,2.
- Since this is a winning strategy for Bob, we have: $\langle \psi_1 | E_1 | \psi_1 \rangle = 1; \langle \psi_2 | E_2 | \psi_2 \rangle = 1$
- Claim 2.1: $\sqrt{E_2} |\psi_1\rangle = 0$
- Claim 2.2: Decompose $|\psi_2\rangle = \alpha |\psi_1\rangle + \beta |\phi\rangle$, where $|\phi\rangle$ is orthonormal to $|\psi_1\rangle$. Then $|\beta| < 1$.

Alice chooses a state $|\psi_i\rangle$ from a fixed set of states $|\psi_1\rangle$,, $|\psi_n\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

 <u>Claim 2</u>: There is no winning strategy for Bob if there are non-orthogonal states.

- \bullet Assume n=2 and let $|\psi_1\rangle$ and $|\psi_2\rangle$ be non-orthogonal.
- The most general strategy for Bob is to measure using operators $\{M_m\}$ and use a function $f:\{1,...,m\} \to \{1,2\}$ to return an answer to Alice. Suppose for the sake of contradiction, there exists such a winning strategy for Bob.
- Let $E_i = \sum_{i:f(i)=i} M_i^{\dagger} M_j$ for i = 1, 2.
- Since this is a winning strategy for Bob, we have:
 - $\langle \psi_1 | E_1 | \psi_1 \rangle = 1; \langle \psi_2 | E_2 | \psi_2 \rangle = 1$
- Claim 2.1: $\sqrt{E_2} |\psi_1\rangle = 0$
- Claim 2.2: Decompose $|\psi_2\rangle = \alpha |\psi_1\rangle + \beta |\phi\rangle$, where $|\phi\rangle$ is orthonormal to $|\psi_1\rangle$. Then $|\beta| < 1$.
- Claim 2.3: $\langle \psi_2 | E_2 | \psi_2 \rangle = |\beta|^2 \langle \phi | E_2 | \phi \rangle \le |\beta|^2 < 1$.
- The above contradicts with the fourth bullet item.

End