COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics: Linear Algebra

Quantum Mechanics Linear algebra: Outer product

• Outer product: Let $|v\rangle$ be a vector in an inner product space V and $|w\rangle$ be a vector in the inner product space W. $|w\rangle \langle v|$ is a linear operator from V to W defined as:

$$(|w\rangle \langle v|)(|v'\rangle) \equiv |w\rangle \langle v|v'\rangle = \langle v|v'\rangle |w\rangle.$$

- $\sum_{i} a_{i} |w_{i}\rangle \langle v_{i}|$ is a linear operator which acts on $|v'\rangle$ to produce $\sum_{i} a_{i} |w_{i}\rangle \langle v_{i}|v'\rangle$.
- Completeness relation: Let $|i\rangle$'s denote orthonormal basis for an inner product space V. Then $\sum_{i} |i\rangle \langle i| = I$ (the identity operator on V).
- <u>Claim</u>: Let $|v_i\rangle$'s denote the orthonormal basis for V and $|w_j\rangle$'s denote orthonormal basis for W. Then any linear operator $A: V \to W$ can be expressed in the outer product form as: $A = \sum_{ij} \langle w_j | A | v_i \rangle | w_j \rangle \langle v_i |.$

Cauchy-Schwarz inequality

For any two vectors $|v\rangle$, $|w\rangle$, $|\langle v|w\rangle|^2 \le \langle v|v\rangle \langle w|w\rangle$.

- Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle = v |v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.
- <u>Characteristic function</u>: This is defined to be $c(\lambda) \equiv det(A \lambda I)$, where *det* denotes determinant for matrices.
 - <u>Fact</u>: The characteristic function depends only on the operator *A* and not the specific matrix representation for *A*.
 - Fact: The solution of the characteristic equation $c(\lambda) = 0$ are the eigenvalues of the operator.
 - Fact: Every operator has at least one eigenvalue.
- Eigenspace: The set of all eigenvectors that have eigenvalue *v* form the eigenspace corresponding to eigenvalue *v*. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A = \sum_i \lambda_i |i\rangle \langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_i .
 - An operator is said to be diagonalizable if it has a diagonal representation.

• Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle = v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.

• <u>Characteristic function</u>: This is defined to be $c(\lambda) \equiv det(A - \lambda I)$, where *det* denotes determinant for matrices.

- <u>Fact</u>: The characteristic function depends only on the operator A and not the specific matrix representation for A.
- Fact: The solution of the characteristic equation c(λ) = 0 are the eigenvalues of the operator.
- Fact: Every operator has at least one eigenvalue.
- Eigenspace: The set of all eigenvectors that have eigenvalue *v* form the eigenspace corresponding to eigenvalue *v*. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A = \sum_i \lambda_i |i\rangle \langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_i .
 - An operator is said to be diagonalizable if it has a diagonal representation.
 - Question: Is the Z operator diagonizable?

• Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle = v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.

• <u>Characteristic function</u>: This is defined to be $c(\lambda) \equiv det(A - \lambda I)$, where *det* denotes determinant for matrices.

- <u>Fact</u>: The characteristic function depends only on the operator *A* and not the specific matrix representation for *A*.
- Fact: The solution of the characteristic equation c(λ) = 0 are the eigenvalues of the operator.
- Fact: Every operator has at least one eigenvalue.
- Eigenspace: The set of all eigenvectors that have eigenvalue v form the eigenspace corresponding to eigenvalue v. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A = \sum_i \lambda_i |i\rangle \langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_i .
 - An operator is said to be diagonalizable if it has a diagonal representation.
 - Diagonal representations are also called orthonormal decomposition.

• Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle = v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.

• <u>Characteristic function</u>: This is defined to be $c(\lambda) \equiv det(A - \lambda I)$, where *det* denotes determinant for matrices.

- <u>Fact</u>: The characteristic function depends only on the operator *A* and not the specific matrix representation for *A*.
- Fact: The solution of the characteristic equation $c(\lambda) = 0$ are the eigenvalues of the operator.
- Fact: Every operator has at least one eigenvalue.
- Eigenspace: The set of all eigenvectors that have eigenvalue v form the eigenspace corresponding to eigenvalue v. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A = \sum_i \lambda_i |i\rangle \langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_i .
 - An operator is said to be diagonalizable if it has a diagonal representation.
 - Diagonal representations are also called orthonormal decomposition.
 - Question: Show that $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ is not diagonalizable.

- Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle = v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.
- <u>Characteristic function</u>: This is defined to be $c(\lambda) \equiv det(A \lambda I)$, where *det* denotes determinant for matrices.
- Eigenspace: The set of all eigenvectors that have eigenvalue v form the eigenspace corresponding to eigenvalue v. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A = \sum_i \lambda_i |i\rangle \langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_i .
- <u>Degenerate</u>: When an eigenspace has more than one dimension, it is called degenerate. Consider the eigenspace corresponding to eigenvalue 2 in the following example:

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Adjoint or Hermitian conjugate: For any linear operator A on vector space V, there exists a unique linear operator A[†] on V such that for all vectors |v⟩, |w⟩ ∈ V:

$$(\ket{v}, A \ket{w}) = (A^{\dagger} \ket{v}, \ket{w})$$

Such a linear operator A^{\dagger} is called the adjoint or Hermitian conjugate of A.

- Exercise: Show that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
- By convention, we define $|v\rangle^{\dagger} \equiv \langle v|$.
- Exercise: Show that $(A | v \rangle)^{\dagger} = \langle v | A^{\dagger}$.
- Exercise: Show that $(|w\rangle \langle v|)^{\dagger} = |v\rangle \langle w|$.
- <u>Exercise</u>: $(\sum_i a_i A_i)^{\dagger} = \sum_{i=1}^{n} a_i^* A_i^{\dagger}$.
- Exercise: Show that $(A^{\dagger})^{\dagger} = A$.
- Exercise: Show that in matrix representation, $A^{\dagger} = (A^*)^T$.

- Adjoint or Hermitian conjugate: For any linear operator A on vector space V, there exists a unique linear operator A[†] on V such that for all vectors |v⟩, |w⟩ ∈ V,
 (|v⟩, A|w⟩) = (A[†] |v⟩, |w⟩). Such a linear operator A[†] is called the adjoint or Hermitian conjugate of A.
- Hermitian or self-adjoint: An operator A with $A^{\dagger} = A$ is called Hermitian or self-adjoint.
- Projectors: Let W be a k-dimensional vector subspace of a d-dimensional vector space V. There is an orthonormal basis |1⟩, ..., |d⟩ for V such that |1⟩, ..., |k⟩ is an orthonormal basis for W. The projector onto the subspace W is defined as:

$$P \equiv \sum_{i=1}^{k} \left| i \right\rangle \left\langle i \right|$$

- Projectors: Let W be a k-dimensional vector subspace of a d-dimensional vector space V. There is an orthonormal basis |1>,..., |d> for V such that |1>,..., |k> is an orthonormal basis for W. The projector onto the subspace W is defined as:
 - $P \equiv \sum_{i=1}^{k} |i\rangle \langle i|.$
 - <u>Observation</u>: The definition is independent of the orthonormal basis used for *W*.
 - Exercise: Projector P is Hermitian. That is $P^{\dagger} = P$.
 - <u>Notation</u>: We use vector space *P* as a shorthand for the vector space onto which *P* is a projector.
 - Exercise: Show that for any projector $P^2 = P$.
- Orthogonal complement: The orthogonal complement of a projector P is the operator $Q \equiv I P$.
 - Exercise: Q is a projector onto the vector space spanned by $|k+1\rangle$,..., $|d\rangle$.

- Projectors: Let W be a k-dimensional vector subspace of a d-dimensional vector space V. There is an orthonormal basis |1>,..., |d> for V such that |1>,..., |k> is an orthonormal basis for W. The projector onto the subspace W is defined as:
 - $P \equiv \sum_{i=1}^{k} |i\rangle \langle i|.$
 - <u>Observation</u>: The definition is independent of the orthonormal basis used for *W*.
 - Exercise: Projector P is Hermitian. That is $P^{\dagger} = P$.
 - <u>Notation</u>: We use vector space *P* as a shorthand for the vector space onto which *P* is a projector.
 - Exercise: Show that for any projector $P^2 = P$.
- Orthogonal complement: The orthogonal complement of a projector P is the operator $Q \equiv I P$.
 - Exercise: Q is a projector onto the vector space spanned by $|k+1\rangle$,..., $|d\rangle$.
- Normal operator: An operator A is said to be normal if $\overline{AA^{\dagger} = A^{\dagger}A}$.

Spectral Decomposition Theorem

Any normal operator M on a vector space V is a diagonalizable with respect to some orthonormal basis for V. Conversely, any diagononalizable operator is normal.

Spectral Decomposition Theorem

Any normal operator M on a vector space V is a diagonalizable with respect to some orthonormal basis for V. Conversely, any diagononalizable operator is normal.

- Exercise: Show that a normal matrix is Hermitian if and only if it has real eigenvalues.
- Unitary matrix: A matrix U is called unitary if $UU^{\dagger} = U^{\dagger}U = I$.
- Unitary operator: An operator U is unitary if $UU^{\dagger} = U^{\dagger}U = I$.
- Exercise: Show that unitary operators preserve inner products.
- Exercise: Let $|v_i\rangle$ be any orthonormal basis set and let $|w_i\rangle = U |v_i\rangle$. Then $|w_i\rangle$ is an orthonormal basis set. Moreover, $U = \sum_i |w_i\rangle \langle v_i|$.
- <u>Exercise</u>: If $|v_i\rangle$ and $|w_i\rangle$ are two orthonormal basis sets, then $U \equiv \sum_i |w_i\rangle \langle v_i |$ is a unitary operator.
- <u>Exercise</u>: Show that all the eigenvalues of a unitary matrix have modulus 1. This means that they can be written as e^{iθ} for some real θ.

End

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information