COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics: Linear Algebra

Quantum Mechanics
 Linear algebra: Outer product

- Outer product: Let $|v\rangle$ be a vector in an inner product space V and $|w\rangle$ be a vector in the inner product space $W .|w\rangle\langle v|$ is a linear operator from V to W defined as:

$$
(|w\rangle\langle v|)\left(\left|v^{\prime}\right\rangle\right) \equiv|w\rangle\left\langle v \mid v^{\prime}\right\rangle=\left\langle v \mid v^{\prime}\right\rangle|w\rangle .
$$

- $\sum_{i} a_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$ is a linear operator which acts on $\left|v^{\prime}\right\rangle$ to produce $\sum_{i} a_{i}\left|w_{i}\right\rangle\left\langle v_{i} \mid v^{\prime}\right\rangle$.
- Completeness relation: Let $|i\rangle$'s denote orthonormal basis for an $\overline{\text { inner product space } V}$. Then $\sum_{i}|i\rangle\langle i|=I$ (the identity operator on V).
- Claim: Let $\left|v_{i}\right\rangle$'s denote the orthonormal basis for V and $\left|w_{j}\right\rangle$'s denote orthonormal basis for W. Then any linear operator $A: V \rightarrow W$ can be expressed in the outer product form as: $A=\sum_{i j}\left\langle w_{j}\right| A\left|v_{i}\right\rangle\left|w_{j}\right\rangle\left\langle v_{i}\right|$.

Cauchy-Schwarz inequality

For any two vectors $|v\rangle,|w\rangle,|\langle v \mid w\rangle|^{2} \leq\langle v \mid v\rangle\langle w \mid w\rangle$.

Quantum Mechanics
 Linear algebra: Eigenvectors and eigenvalues

- Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle=v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.
- Characteristic function: This is defined to be $c(\lambda) \equiv \operatorname{det}(A-\lambda I)$, where det denotes determinant for matrices.
- Fact: The characteristic function depends only on the operator A and not the specific matrix representation for A.
- Fact: The solution of the characteristic equation $c(\lambda)=0$ are the eigenvalues of the operator.
- Fact: Every operator has at least one eigenvalue.
- Eigenspace: The set of all eigenvectors that have eigenvalue v form the eigenspace corresponding to eigenvalue v. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A=\sum_{i} \lambda_{i}|i\rangle\langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_{i}.
- An operator is said to be diagonalizable if it has a diagonal representation.

Quantum Mechanics
 Linear algebra: Eigenvectors and eigenvalues

- Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle=v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.
- Characteristic function: This is defined to be $c(\lambda) \equiv \operatorname{det}(A-\lambda I)$, where det denotes determinant for matrices.
- Fact: The characteristic function depends only on the operator A and not the specific matrix representation for A.
- Fact: The solution of the characteristic equation $c(\lambda)=0$ are the eigenvalues of the operator.
- Fact: Every operator has at least one eigenvalue.
- Eigenspace: The set of all eigenvectors that have eigenvalue v form the eigenspace corresponding to eigenvalue v. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A=\sum_{i} \lambda_{i}|i\rangle\langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_{i}.
- An operator is said to be diagonalizable if it has a diagonal representation.
- Question: Is the Z operator diagonizable?

Quantum Mechanics
 Linear algebra: Eigenvectors and eigenvalues

- Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle=v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.
- Characteristic function: This is defined to be $c(\lambda) \equiv \operatorname{det}(A-\lambda I)$, where det denotes determinant for matrices.
- Fact: The characteristic function depends only on the operator A and not the specific matrix representation for A.
- Fact: The solution of the characteristic equation $c(\lambda)=0$ are the eigenvalues of the operator.
- Fact: Every operator has at least one eigenvalue.
- Eigenspace: The set of all eigenvectors that have eigenvalue v form the eigenspace corresponding to eigenvalue v. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A=\sum_{i} \lambda_{i}|i\rangle\langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_{i}.
- An operator is said to be diagonalizable if it has a diagonal representation.
- Diagonal representations are also called orthonormal decomposition.

Quantum Mechanics
 Linear algebra: Eigenvectors and eigenvalues

- Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle=v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.
- Characteristic function: This is defined to be $c(\lambda) \equiv \operatorname{det}(A-\lambda /)$, where det denotes determinant for matrices.
- Fact: The characteristic function depends only on the operator A and not the specific matrix representation for A.
- Fact: The solution of the characteristic equation $c(\lambda)=0$ are the eigenvalues of the operator.
- Fact: Every operator has at least one eigenvalue.
- Eigenspace: The set of all eigenvectors that have eigenvalue v form the eigenspace corresponding to eigenvalue v. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A=\sum_{i} \lambda_{i}|i\rangle\langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_{i}.
- An operator is said to be diagonalizable if it has a diagonal representation.
- Diagonal representations are also called orthonormal decomposition.
- Question: Show that $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ is not diagonalizable.

Quantum Mechanics
 Linear algebra: Eigenvectors and eigenvalues

- Eigenvector: A eigenvector of a linear operator A on a vector space is a non-zero vector $|v\rangle$ such that $A|v\rangle=v|v\rangle$, where v is a complex number known as the eigenvalue of A corresponding to the eigenvector $|v\rangle$.
- Characteristic function: This is defined to be $c(\lambda) \equiv \operatorname{det}(A-\lambda I)$, where det denotes determinant for matrices.
- Eigenspace: The set of all eigenvectors that have eigenvalue v form the eigenspace corresponding to eigenvalue v. It is a vector subspace.
- Diagonal representation: The diagonal representation of an operator A on vector space V is given by $A=\sum_{i} \lambda_{i}|i\rangle\langle i|$, where the vectors $|i\rangle$ form an orthonormal set of eigenvectors for A with corresponding eigenvalue λ_{i}.
- Degenerate: When an eigenspace has more than one dimension, it is called degenerate. Consider the eigenspace corresponding to eigenvalue 2 in the following example:

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Quantum Mechanics

- Adjoint or Hermitian conjugate: For any linear operator A on vector space V, there exists a unique linear operator A^{\dagger} on V such that for all vectors $|v\rangle,|w\rangle \in V$:

$$
(|v\rangle, A|w\rangle)=\left(A^{\dagger}|v\rangle,|w\rangle\right)
$$

Such a linear operator A^{\dagger} is called the adjoint or Hermitian conjugate of A.

- Exercise: Show that $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.
- By convention, we define $|v\rangle^{\dagger} \equiv\langle v|$.
- Exercise: Show that $(A|v\rangle)^{\dagger}=\langle v| A^{\dagger}$.
- Exercise: Show that $(|w\rangle\langle v|)^{\dagger}=|v\rangle\langle w|$.
- Exercise: $\left(\sum_{i} a_{i} A_{i}\right)^{\dagger}=\sum_{i} a_{i}^{*} A_{i}^{\dagger}$.
- Exercise: Show that $\left(A^{\dagger}\right)^{\dagger}=A$.
- Exercise: Show that in matrix representation, $A^{\dagger}=\left(A^{*}\right)^{T}$.

Quantum Mechanics

- Adjoint or Hermitian conjugate: For any linear operator A on vector space V, there exists a unique linear operator A^{\dagger} on V such that for all vectors $|v\rangle,|w\rangle \in V$, $(|v\rangle, A|w\rangle)=\left(A^{\dagger}|v\rangle,|w\rangle\right)$. Such a linear operator A^{\dagger} is called the adjoint or Hermitian conjugate of A.
- Hermitian or self-adjoint: An operator A with $A^{\dagger}=A$ is called Hermitian or self-adjoint.
- Projectors: Let W be a k-dimensional vector subspace of a d-dimensional vector space V. There is an orthonormal basis $|1\rangle, \ldots,|d\rangle$ for V such that $|1\rangle, \ldots,|k\rangle$ is an orthonormal basis for W. The projector onto the subspace W is defined as:

$$
P \equiv \sum_{i=1}^{k}|i\rangle\langle i|
$$

Quantum Mechanics

- Projectors: Let W be a k-dimensional vector subspace of a d-dimensional vector space V. There is an orthonormal basis $|1\rangle, \ldots,|d\rangle$ for V such that $|1\rangle, \ldots,|k\rangle$ is an orthonormal basis for W. The projector onto the subspace W is defined as: $P \equiv \sum_{i=1}^{k}|i\rangle\langle i|$.
- Observation: The definition is independent of the orthonormal basis used for W.
- Exercise: Projector P is Hermitian. That is $P^{\dagger}=P$.
- Notation: We use vector space P as a shorthand for the vector space onto which P is a projector.
- Exercise: Show that for any projector $P^{2}=P$.
- Orthogonal complement: The orthogonal complement of a projector P is the operator $Q \equiv I-P$.
- Exercise: Q is a projector onto the vector space spanned by $|k+1\rangle, \ldots,|d\rangle$.

Quantum Mechanics

- Projectors: Let W be a k-dimensional vector subspace of a d-dimensional vector space V. There is an orthonormal basis $|1\rangle, \ldots,|d\rangle$ for V such that $|1\rangle, \ldots,|k\rangle$ is an orthonormal basis for W. The projector onto the subspace W is defined as: $P \equiv \sum_{i=1}^{k}|i\rangle\langle i|$.
- Observation: The definition is independent of the orthonormal basis used for W.
- Exercise: Projector P is Hermitian. That is $P^{\dagger}=P$.
- Notation: We use vector space P as a shorthand for the vector space onto which P is a projector.
- Exercise: Show that for any projector $P^{2}=P$.
- Orthogonal complement: The orthogonal complement of a projector P is the operator $Q \equiv I-P$.
- Exercise: Q is a projector onto the vector space spanned by $|k+1\rangle, \ldots,|d\rangle$.
- Normal operator: An operator A is said to be normal if $A A^{\dagger}=A^{\dagger} A$.

Quantum Mechanics

Linear algebra: Adjoints and Hermitian operators

Spectral Decomposition Theorem

Any normal operator M on a vector space V is a diagonalizable with respect to some orthonormal basis for V. Conversely, any diagononalizable operator is normal.

Quantum Mechanics

Linear algebra: Adjoints and Hermitian operators

Spectral Decomposition Theorem

Any normal operator M on a vector space V is a diagonalizable with respect to some orthonormal basis for V. Conversely, any diagononalizable operator is normal.

- Exercise: Show that a normal matrix is Hermitian if and only if it has real eigenvalues.
- Unitary matrix: A matrix U is called unitary if $U U^{\dagger}=U^{\dagger} U=I$.
- Unitary operator: An operator U is unitary if $U U^{\dagger}=U^{\dagger} U=I$.
- Exercise: Show that unitary operators preserve inner products.
- Exercise: Let $\left|v_{i}\right\rangle$ be any orthonormal basis set and let $\left|w_{i}\right\rangle=U\left|v_{i}\right\rangle$. Then $\left|w_{i}\right\rangle$ is an orthonormal basis set. Moreover, $U=\sum_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$.
- Exercise: If $\left|v_{i}\right\rangle$ and $\left|w_{i}\right\rangle$ are two orthonormal basis sets, then $U \equiv \sum_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$ is a unitary operator.
- Exercise: Show that all the eigenvalues of a unitary matrix have modulus 1. This means that they can be written as $e^{i \theta}$ for some real θ.

End

