COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics: Linear Algebra

Quantum Mechanics

- Linear algebra: Study of vector spaces and linear operations on those vector spaces.
- The quantum mechanical notation of a vector in a vector space is $|\psi\rangle$, where ψ is the label for the vector.
- The zero vector of the vector space is denoted using $\mathbf{0}$. We do not use $|0\rangle$ since this is used to denote something else.
- A spanning set for a vector space is a set of vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ such that any vector of the vector space can be written as a linear combination $|v\rangle=\sum_{i} a_{i}\left|v_{i}\right\rangle$.

Quantum Mechanics

Linear algebra

- Linear algebra: Study of vector spaces and linear operations on those vector spaces.
- The quantum mechanical notation of a vector in a vector space is $|\psi\rangle$, where ψ is the label for the vector.
- The zero vector of the vector space is denoted using $\mathbf{0}$. We do not use $|0\rangle$ since this is used to denote something else.
- A spanning set for a vector space is a set of vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ such that any vector of the vector space can be written as a linear combination $|v\rangle=\sum_{i} a_{i}\left|v_{i}\right\rangle$.
- Question: Give a spanning set for the vector space \mathbb{C}^{2}.

Quantum Mechanics

- Linear algebra: Study of vector spaces and linear operations on those vector spaces.
- The quantum mechanical notation of a vector in a vector space is $|\psi\rangle$, where ψ is the label for the vector.
- The zero vector of the vector space is denoted using $\mathbf{0}$. We do not use $|0\rangle$ since this is used to denote something else.
- A spanning set for a vector space is a set of vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ such that any vector of the vector space can be written as a linear combination $|v\rangle=\sum_{i} a_{i}\left|v_{i}\right\rangle$.
- Question: Give a spanning set for the vector space \mathbb{C}^{2}.

$$
\left|v_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] ; \quad\left|v_{2}\right\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Quantum Mechanics

Linear algebra: Spanning set and linear independence

- Linear algebra: Study of vector spaces and linear operations on those vector spaces.
- The quantum mechanical notation of a vector in a vector space is $|\psi\rangle$, where ψ is the label for the vector.
- The zero vector of the vector space is denoted using $\mathbf{0}$. We do not use $|0\rangle$ since this is used to denote something else.
- A spanning set for a vector space is a set of vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ such that any vector of the vector space can be written as a linear combination $|v\rangle=\sum_{i} a_{i}\left|v_{i}\right\rangle$.
- Question: Give a spanning set for the vector space \mathbb{C}^{2}.

$$
\left|v_{1}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \quad\left|v_{2}\right\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

- Question: Express $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ as a combination of $\left|v_{1}\right\rangle$ and $\left|v_{2}\right\rangle$.

Quantum Mechanics

- Linear algebra: Study of vector spaces and linear operations on those vector spaces.
- The quantum mechanical notation of a vector in a vector space is $|\psi\rangle$, where ψ is the label for the vector.
- The zero vector of the vector space is denoted using $\mathbf{0}$. We do not use $|0\rangle$ since this is used to denote something else.
- A spanning set for a vector space is a set of vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ such that any vector of the vector space can be written as a linear combination $|v\rangle=\sum_{i} a_{i}\left|v_{i}\right\rangle$.
- A set of non-zero vectors is linearly dependent if there exists a set of complex numbers a_{1}, \ldots, a_{n} with $a_{i} \neq 0$ for at least one value of i such that

$$
a_{1}\left|v_{1}\right\rangle+\ldots+a_{n}\left|v_{n}\right\rangle=\mathbf{0}
$$

A set of vectors is linearly independent if it is not linearly dependent.

- Question: Are the vectors $\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]$ linearly dependent?

Quantum Mechanics

Linear algebra: Spanning set and linear independence

- A set of non-zero vectors is linearly dependent if there exists a set of complex numbers a_{1}, \ldots, a_{n} with $a_{i} \neq 0$ for at least one value of i such that

$$
a_{1}\left|v_{1}\right\rangle+\ldots+a_{n}\left|v_{n}\right\rangle=\mathbf{0}
$$

A set of vectors is linearly independent if it is not linearly dependent.

- Fact: Any two sets of linearly independent spanning sets contain the same number of vectors. Any such set is called a basis for the vector space. Moreover, such a basis set always exists.
- The number of elements in any basis is called the dimension of the vector space.
- In this course, we will only be interested in finite dimensional vector spaces.

Quantum Mechanics

- A linear operator between vector spaces V and W is defined to be any function $A: V \rightarrow W$ that is linear in its input:

$$
A\left(\sum_{i} a_{i}\left|v_{i}\right\rangle\right)=\sum_{i} a_{i} A\left|v_{i}\right\rangle .
$$

(We use $A|$.$\rangle in short to indicate A(|\rangle$.$)). A linear operator on a$ vector space V means that the linear operator is from V to V.

- Example: Identity operator I_{V} on any vector space V satisfies $\overline{I_{v}|v\rangle=}|v\rangle$ for all $|v\rangle \in V$.
- Example: Zero operator 0 on any vector space V satisfies $0|v\rangle=\mathbf{0}$ for all $|v\rangle \in V$.
- Claim: The action of a linear operator is completely determined by its action on the basis.

Quantum Mechanics

- Linear operator: A linear operator between vector spaces V and W is defined to be any function $A: V \rightarrow W$ that is linear in its input: $A\left(\sum_{i} a_{i}\left|v_{i}\right\rangle\right)=\sum_{i} a_{i} A\left|v_{i}\right\rangle$.
- Composition: Given vector spaces V, W, X and linear operators $A: V \rightarrow W$ and $B: W \rightarrow X$, then $B A$ denotes the linear operator from V to X that is a composition of operators B and A. We use $B A|v\rangle$ to denote $B(A(|v\rangle))$.

Quantum Mechanics

- Linear operator: A linear operator between vector spaces V and W is defined to be any function $A: V \rightarrow W$ that is linear in its input: $A\left(\sum_{i} a_{i}\left|v_{i}\right\rangle\right)=\sum_{i} a_{i} A\left|v_{i}\right\rangle$.
- Composition: Given vector spaces V, W, X and linear operators $\overline{A: V \rightarrow W}$ and $B: W \rightarrow X$, then $B A$ denotes the linear operator from V to X that is a composition of operators B and A. We use $B A|v\rangle$ to denote $B(A(|v\rangle))$.
- Matrix representation: Let $A: V \rightarrow W$ be a linear operator and let $\left|v_{1}\right\rangle, \ldots,\left|v_{m}\right\rangle$ be basis for V and $\left|w_{1}\right\rangle, \ldots,\left|w_{n}\right\rangle$ be basis for W. Then for every $1 \leq j \leq m$, there are complex numbers $A_{1 j}, \ldots, A_{n j}$ such that

$$
A\left|v_{j}\right\rangle=\sum_{i} A_{i j}\left|w_{i}\right\rangle
$$

- Question: Let V be a vector space with basis $|0\rangle,|1\rangle$ and $\overline{A: V \rightarrow} V$ be a linear operator such that $A|0\rangle=|1\rangle$ and $A|1\rangle=|0\rangle$. Give the matrix representation of A.

Quantum Mechanics

- Inner product: Inner product is a function that takes two vectors and produces a complex number (denoted by (., .)).
- A function (.,.) from $V \times V \rightarrow \mathbb{C}$ is an inner product if it satisfies the requirement that:
(1) (.,.) is linear in the second argument. That is

$$
\left(|v\rangle, \sum_{i} \lambda_{i}\left|w_{i}\right\rangle\right)=\sum_{i} \lambda_{i}\left(|v\rangle,\left|w_{i}\right\rangle\right) .
$$

(2) $(|v\rangle,|w\rangle)=(|w\rangle,|v\rangle)^{*}$.
(3) $(|v\rangle,|v\rangle) \geq 0$ with equality if and only if $|v\rangle=0$.

- Question: Show that $\left(\sum_{i} \lambda_{i}\left|w_{i}\right\rangle,|v\rangle\right)=\sum_{i} \lambda_{i}^{*}\left(\left|w_{i}\right\rangle,|v\rangle\right)$.

Quantum Mechanics

- Inner product: Inner product is a function that takes two vectors and produces a complex number (denoted by (.,.)).
- A function (.,.) from $V \times V \rightarrow \mathbb{C}$ is an inner product if it satisfies the requirement that:
(1) (.,.) is linear in the second argument. That is

$$
\left(|v\rangle, \sum_{i} \lambda_{i}\left|w_{i}\right\rangle\right)=\sum_{i} \lambda_{i}\left(|v\rangle,\left|w_{i}\right\rangle\right) .
$$

(2) $(|v\rangle,|w\rangle)=(|w\rangle,|v\rangle)^{*}$.
(3) $(|v\rangle,|v\rangle) \geq 0$ with equality if and only if $|v\rangle=0$.

- Inner Product Space: A vector space equipped with an inner product is called an inner product space.
- In finite dimensions, a Hilbert space is simply an inner product space.

Quantum Mechanics

- Dual vector: $\langle v|$ is used to denote the dual vector to the vector $|v\rangle$. The dual is a linear operator from an inner product space V to complex number \mathbb{C}, defined by $\langle v|(|w\rangle) \equiv\langle v \mid w\rangle \equiv(|v\rangle,|w\rangle)$.
- Orthogonal: Vectors $|w\rangle$ and $|v\rangle$ are orthogonal if their inner product is 0 .
- Norm: The norm of a vector $|v\rangle$ denoted by $\||v\rangle \|$ is defined as:

$$
\||v\rangle \|=\sqrt{\langle v \mid v\rangle}
$$

- Unit vector: A unit vector is a vector $|v\rangle$ such that $\||v\rangle \|=1$.
- Normalized vector: $\frac{|v\rangle}{\||v\rangle \|}$ is called the normalized form of vector $|v\rangle$.
- Orthonormal set: A set of vectors $|1\rangle, \ldots,|n\rangle$ is orthonormal if each vector is a unit vector and distinct vectors in the set are orthogonal. That is $\langle i \mid j\rangle=\delta_{i j}$.

Quantum Mechanics

Linear algebra: Inner product

- Orthonormal set: A set of vectors $|1\rangle, \ldots,|n\rangle$ is orthonormal if each vector is a unit vector and distinct vectors in the set are orthogonal. That is $\langle i \mid j\rangle=\delta_{i j}$.
- Let $\left|w_{1}\right\rangle, \ldots,\left|w_{d}\right\rangle$ be a basis set for some inner product space V. The following method, called the Gram-Schmidt procedure, produces an orthonormal basis set $\left|v_{1}\right\rangle, \ldots,\left|v_{d}\right\rangle$ for the vector space V.

Gram-Schmidt procedure

- $\left|v_{1}\right\rangle=\frac{\left|w_{1}\right\rangle}{\|\left|w_{1}\right\rangle \|}$.
- For $1 \leq k \leq d-1,\left|v_{k+1}\right\rangle$ is inductively defined as:

$$
\left|v_{k+1}\right\rangle=\frac{\left|w_{k+1}\right\rangle-\sum_{i=1}^{k}\left\langle v_{i} \mid w_{k+1}\right\rangle\left|v_{i}\right\rangle}{\|\left|w_{k+1}\right\rangle-\sum_{i=1}^{k}\left\langle v_{i} \mid w_{k+1}\right\rangle\left|v_{i}\right\rangle \|}
$$

Quantum Mechanics

Linear algebra: Inner product

- Orthonormal set: A set of vectors $|1\rangle, \ldots,|n\rangle$ is orthonormal if each vector is a unit vector and distinct vectors in the set are orthogonal. That is $\langle i \mid j\rangle=\delta_{i j}$.
- Let $\left|w_{1}\right\rangle, \ldots,\left|w_{d}\right\rangle$ be a basis set for some inner product space V. The following method, called the Gram-Schmidt procedure, produces an orthonormal basis set $\left|v_{1}\right\rangle, \ldots,\left|v_{d}\right\rangle$ for the vector space V.

Gram-Schmidt procedure

- $\left|v_{1}\right\rangle=\frac{\left|w_{1}\right\rangle}{\|\left|w_{1}\right\rangle \|}$.
- For $1 \leq k \leq d-1,\left|v_{k+1}\right\rangle$ is inductively defined as:

$$
\left|v_{k+1}\right\rangle=\frac{\left|w_{k+1}\right\rangle-\sum_{i=1}^{k}\left\langle v_{i} \mid w_{k+1}\right\rangle\left|v_{i}\right\rangle}{\|\left|w_{k+1}\right\rangle-\sum_{i=1}^{k}\left\langle v_{i} \mid w_{k+1}\right\rangle\left|v_{i}\right\rangle \|}
$$

- Question Show that the Gram-Schmidt procedure produces an orthonormal basis for V.

Quantum Mechanics

Linear algebra: Inner product

- Orthonormal set: A set of vectors $|1\rangle, \ldots,|n\rangle$ is orthonormal if each vector is a unit vector and distinct vectors in the set are orthogonal. That is $\langle i \mid j\rangle=\delta_{i j}$.
- Let $\left|w_{1}\right\rangle, \ldots,\left|w_{d}\right\rangle$ be a basis set for some inner product space V. The following method, called the Gram-Schmidt procedure, produces an orthonormal basis set $\left|v_{1}\right\rangle, \ldots,\left|v_{d}\right\rangle$ for the vector space V.

Gram-Schmidt procedure

- $\left|v_{1}\right\rangle=\frac{\left|w_{1}\right\rangle}{\left.\| w_{1}\right\rangle \|}$.
- For $1 \leq k \leq d-1,\left|v_{k+1}\right\rangle$ is inductively defined as:

$$
\left|v_{k+1}\right\rangle=\frac{\left|w_{k+1}\right\rangle-\sum_{i=1}^{k}\left\langle v_{i} \mid w_{k+1}\right\rangle\left|v_{i}\right\rangle}{\|\left|w_{k+1}\right\rangle-\sum_{i=1}^{k}\left\langle v_{i} \mid w_{k+1}\right\rangle\left|v_{i}\right\rangle \|}
$$

- Theorem: Any finite dimensional inner product space of dimension d has an orthonormal basis $\left|v_{1}\right\rangle, \ldots,\left|v_{d}\right\rangle$.

Quantum Mechanics

- Orthonormal set: A set of vectors $|1\rangle, \ldots,|n\rangle$ is orthonormal if each vector is a unit vector and distinct vectors in the set are orthogonal. That is $\langle i \mid j\rangle=\delta_{i j}$.
- Consider an orthonormal basis $|1\rangle, \ldots,|n\rangle$ for an inner product space V. Let $|v\rangle=\sum_{i} v_{i}|i\rangle$ and $|w\rangle=\sum_{i} w_{i}|i\rangle$. Then

$$
\langle v \mid w\rangle=\left(\sum_{i} v_{i}|i\rangle, \sum_{j} w_{j}|j\rangle\right)=?
$$

Quantum Mechanics

- Orthonormal set: A set of vectors $|1\rangle, \ldots,|n\rangle$ is orthonormal if each vector is a unit vector and distinct vectors in the set are orthogonal. That is $\langle i \mid j\rangle=\delta_{i j}$.
- Consider an orthonormal basis $|1\rangle, \ldots,|n\rangle$ for an inner product space V. Let $|v\rangle=\sum_{i} v_{i}|i\rangle$ and $|w\rangle=\sum_{i} w_{i}|i\rangle$. Then

$$
\langle v \mid w\rangle=\left(\sum_{i} v_{i}|i\rangle, \sum_{j} w_{j}|j\rangle\right)=\sum_{i j} v_{i}^{*} w_{j} \delta_{i j}=\left[\begin{array}{lll}
v_{1}^{*} & \ldots & v_{n}^{*}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]
$$

- Dual vector $\langle v|$ has a row vector representation as seen above.

Quantum Mechanics

- Outer product: Let $|v\rangle$ be a vector in an inner product space V and $|w\rangle$ be a vector in the inner product space $W .|w\rangle\langle v|$ is a linear operator from V to W defined as:

$$
(|w\rangle\langle v|)\left(\left|v^{\prime}\right\rangle\right) \equiv|w\rangle\left\langle v \mid v^{\prime}\right\rangle=\left\langle v \mid v^{\prime}\right\rangle|w\rangle .
$$

- $\sum_{i} a_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$ is a linear operator which acts on $\left|v^{\prime}\right\rangle$ to produce $\sum_{i} a_{i}\left|w_{i}\right\rangle\left\langle v_{i} \mid v^{\prime}\right\rangle$.
- Completeness relation: Let $|i\rangle$'s denote orthonormal basis for an inner product space V. Then $\sum_{i}|i\rangle\langle i|=I$ (the identity operator on V).
- Claim: Let $\left|v_{i}\right\rangle$'s denote the orthonormal basis for V and $\left|w_{j}\right\rangle$'s denote orthonormal basis for W. Then any linear operator $A: V \rightarrow W$ can be expressed in the outer product form as:

$$
A=\sum_{i j}\left\langle w_{j}\right| A\left|v_{i}\right\rangle\left|w_{j}\right\rangle\left\langle v_{i}\right|
$$

Quantum Mechanics
 Linear algebra: Outer product

- Outer product: Let $|v\rangle$ be a vector in an inner product space V and $|w\rangle$ be a vector in the inner product space $W .|w\rangle\langle v|$ is a linear operator from V to W defined as:

$$
(|w\rangle\langle v|)\left(\left|v^{\prime}\right\rangle\right) \equiv|w\rangle\left\langle v \mid v^{\prime}\right\rangle=\left\langle v \mid v^{\prime}\right\rangle|w\rangle .
$$

- $\sum_{i} a_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$ is a linear operator which acts on $\left|v^{\prime}\right\rangle$ to produce $\sum_{i} a_{i}\left|w_{i}\right\rangle\left\langle v_{i} \mid v^{\prime}\right\rangle$.
- Completeness relation: Let $|i\rangle$'s denote orthonormal basis for an $\overline{\text { inner product space } V}$. Then $\sum_{i}|i\rangle\langle i|=I$ (the identity operator on V).
- Claim: Let $\left|v_{i}\right\rangle$'s denote the orthonormal basis for V and $\left|w_{j}\right\rangle$'s denote orthonormal basis for W. Then any linear operator $A: V \rightarrow W$ can be expressed in the outer product form as: $A=\sum_{i j}\left\langle w_{j}\right| A\left|v_{i}\right\rangle\left|w_{j}\right\rangle\left\langle v_{i}\right|$.

Cauchy-Schwarz inequality

For any two vectors $|v\rangle,|w\rangle,|\langle v \mid w\rangle|^{2} \leq\langle v \mid v\rangle\langle w \mid w\rangle$.

End

