COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Introduction: Quantum Algorithms

- There are three types of Quantum Algorithms:
 - Using quantum parallelism as in the Deutsch-Jozsa algorithm.
 - Quantum search.
 - Quantum simulation.

Introduction Quantum algorithms

- There are three types of Quantum Algorithms:
 - Using quantum parallelism as in the Deutsch-Jozsa algorithm.
 - Quantum search.
 - Quantum simulation.
- How powerful is quantum computation?
 - Classical computational complexity has been methodically studied. Where does quantum computation fit in the picture?

- There are a lot of subtle issues to address when developing the general area of quantum information theory. However, classical information theory provides a general outline for the questions that may be relevant.
- We may want to obtain the quantum versions of the two fundamental results of information theory:
 - <u>Shannon's noiseless channel theorem</u>: Quantifies the resources required to transmit information from a classical information source.
 - Shannon's noisy channel theorem: Quantifies the amount of resources needed to transmit through a channel that is noisy.
- Since quantum resource and information source are fundamentally different from a classical one, these theorems have to be revisited we should be prepared for surprises.

- <u>Claim</u>: It may not be possible to distinguish between the quantum states $|0\rangle$, $|1\rangle$, $|+\rangle$, $|-\rangle$.
- Given the above fact here is an interesting protocol for preventing counterfeiting currency.
 - Every currency note in addition to having a classical serial number also has sequence of qubits that are either $|0\rangle$ or $|+\rangle$.
- There are other interesting protocols based on similar ideas.

Introduction: Entanglement

- We said that one can measure in any orthonormal basis.
- Often, we would want to measure in a basis that is rotation of the standard basis.

So, |v⟩ = cos θ |0⟩ + sin θ |1⟩ and |v[⊥]⟩ = -sin θ |0⟩ + cos θ |1⟩
Claim: Making a measurement in the {|v⟩, |v[⊥]⟩} basis is the same as making a measurement in the standard basis after applying the following gate:

$$Rot_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

- We said that one can measure in any orthonormal basis.
- Often, we would want to measure in a basis that is rotation of the standard basis.

- So, $|v\rangle = \cos \theta |0\rangle + \sin \theta |1\rangle$ and $|v^{\perp}\rangle = -\sin \theta |0\rangle + \cos \theta |1\rangle$
- <u>Claim</u>: Making a measurement in the $\{|v\rangle, |v^{\perp}\rangle\}$ basis is the same as making a measurement in the standard basis after applying the following gate: $Rot_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$.
- In terms of circuits, the following two circuits exhibit the same measurement results.

• Let $\Delta = \theta - \gamma$. What is output of the following circuit $|\psi\rangle$?

• Let $\Delta = \theta - \gamma$. What is output of the following circuit $|\psi\rangle$? $|0\rangle$ H
Rot_{θ}

 ψ

Rot

 $|\psi
angle = rac{1}{\sqrt{2}} \left(\cos\Delta \left| 00
ight
angle + \sin\Delta \left| 01
ight
angle - \sin\Delta \left| 10
ight
angle + \cos\Delta \left| 11
ight
angle
ight)$

• Corollary: Suppose Alice has the first qubit and Bob has the second qubit. Then on measurement of $|\psi\rangle$, the output is same with probability $\cos^2 \Delta$ and different with probability $\sin^2 \Delta$.

CHSH game

Alice and Bob receive randomly generated bits $x, y \in \{0, 1\}$ respectively from a Charlie. Their goal is to respond with bits *a* and *b* such that $a \oplus b = x \land y$. They are not allowed to communicate after receiving *x* and *y*.

- Lemma 1: There is no classical deterministic or randomized strategy that allows Alice and Bob to win with probability more than 3/4.
- Lemma 2: There is a quantum strategy that allows Alice and Bob to win with probability $\cos^2 \pi/8 \approx 0.85 > 3/4$.

CHSH game

Alice and Bob receive randomly generated bits $x, y \in \{0, 1\}$ respectively from a Charlie. Their goal is to respond with bits *a* and *b* such that $a \oplus b = x \land y$. They are not allowed to communicate after receiving *x* and *y*.

• Lemma 2: There is a quantum strategy that allows Alice and Bob to win with probability $\cos^2 \pi/8 \approx 0.85 > 3/4$.

Quantum strategy

- Alice and Bob share an EPR pair $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$ to start with.
- Alice and Bob measure in basis {|v_x⟩, |v_x[⊥]⟩}, {|w_x⟩, |w_x[⊥]⟩} respectively and they simply return their measurement outputs.

End

Ragesh Jaiswal, CSE, IIT Delhi COL863: Quantum Computation and Information