COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Introduction: Quantum Algorithms

- There are three types of Quantum Algorithms:
- Using quantum parallelism as in the Deutsch-Jozsa algorithm.
- Quantum search.
- Quantum simulation.

Introduction

Quantum algorithms

- There are three types of Quantum Algorithms:
- Using quantum parallelism as in the Deutsch-Jozsa algorithm.
- Quantum search.
- Quantum simulation.
- How powerful is quantum computation?
- Classical computational complexity has been methodically studied. Where does quantum computation fit in the picture?

- There are a lot of subtle issues to address when developing the general area of quantum information theory. However, classical information theory provides a general outline for the questions that may be relevant.
- We may want to obtain the quantum versions of the two fundamental results of information theory:
- Shannon's noiseless channel theorem: Quantifies the resources required to transmit information from a classical information source.
- Shannon's noisy channel theorem: Quantifies the amount of resources needed to transmit through a channel that is noisy.
- Since quantum resource and information source are fundamentally different from a classical one, these theorems have to be revisited we should be prepared for surprises.
- Claim: It may not be possible to distinguish between the quantum states $|0\rangle,|1\rangle,|+\rangle,|-\rangle$.
- Given the above fact here is an interesting protocol for preventing counterfeiting currency.
- Every currency note in addition to having a classical serial number also has sequence of qubits that are either $|0\rangle$ or $|+\rangle$.
- There are other interesting protocols based on similar ideas.

Introduction: Entanglement

Introduction

- We said that one can measure in any orthonormal basis.
- Often, we would want to measure in a basis that is rotation of the standard basis.

- So, $|v\rangle=\cos \theta|0\rangle+\sin \theta|1\rangle$ and $\left|v^{\perp}\right\rangle=-\sin \theta|0\rangle+\cos \theta|1\rangle$
- Claim: Making a measurement in the $\left\{|v\rangle,\left|v^{\perp}\right\rangle\right\}$ basis is the same as making a measurement in the standard basis after applying the following gate:

$$
\operatorname{Rot}_{\theta}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Introduction

- We said that one can measure in any orthonormal basis.
- Often, we would want to measure in a basis that is rotation of the standard basis.

- So, $|v\rangle=\cos \theta|0\rangle+\sin \theta|1\rangle$ and $\left|v^{\perp}\right\rangle=-\sin \theta|0\rangle+\cos \theta|1\rangle$
- Claim: Making a measurement in the $\left\{|v\rangle,\left|v^{\perp}\right\rangle\right\}$ basis is the same as making a measurement in the standard basis after applying the following gate: Rot $_{\theta}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$.
- In terms of circuits, the following two circuits exhibit the same measurement results.

Introduction

Entanglement: CHSH game

- Let $\Delta=\theta-\gamma$. What is output of the following circuit $|\psi\rangle$?

Introduction

- Let $\Delta=\theta-\gamma$. What is output of the following circuit $|\psi\rangle$?

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(\cos \Delta|00\rangle+\sin \Delta|01\rangle-\sin \Delta|10\rangle+\cos \Delta|11\rangle)
$$

- Corollary: Suppose Alice has the first qubit and Bob has the second qubit. Then on measurement of $|\psi\rangle$, the output is same with probability $\cos ^{2} \Delta$ and different with probabiity $\sin ^{2} \Delta$.

Introduction

CHSH game

Alice and Bob receive randomly generated bits $x, y \in\{0,1\}$ respectively from a Charlie. Their goal is to respond with bits a and b such that $a \oplus b=x \wedge y$. They are not allowed to communicate after receiving x and y.

- Lemma 1: There is no classical deterministic or randomized strategy that allows Alice and Bob to win with probability more than $3 / 4$.
- Lemma 2: There is a quantum strategy that allows Alice and Bob to win with probability $\cos ^{2} \pi / 8 \approx 0.85>3 / 4$.

Introduction

Entanglement: CHSH game

CHSH game

Alice and Bob receive randomly generated bits $x, y \in\{0,1\}$ respectively from a Charlie. Their goal is to respond with bits a and b such that $a \oplus b=x \wedge y$. They are not allowed to communicate after receiving x and y.

- Lemma 2: There is a quantum strategy that allows Alice and Bob to win with probability $\cos ^{2} \pi / 8 \approx 0.85>3 / 4$.

Quantum strategy

- Alice and Bob share an EPR pair $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$ to start with.
- Alice and Bob measure in basis $\left\{\left|v_{x}\right\rangle,\left|v_{x}^{\perp}\right\rangle\right\},\left\{\left|w_{x}\right\rangle,\left|w_{x}^{\perp}\right\rangle\right\}$ respectively and they simply return their measurement outputs.

Ragesh Jaiswal, CSE, IIT Delhi

End

