COL863: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Introduction

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - A two qubit system can be written as a superposition of computational basis states $|00\rangle\,, |01\rangle\,, |10\rangle\,, |11\rangle$:

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$$

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - A two qubit system can be written as a superposition of computational basis states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$:

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$$

- Can individual qubits be measured? Yes
- What is the probability that the measurement output of the first qubit is 0?

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a unit vector in a two-dimensional complex vector space with |0⟩ and |1⟩ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - A two qubit system can be written as a superposition of computational basis states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$:

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$$

- Can individual qubits be measured? Yes
- What is the probability that the measurement output of the first qubit is 0? $|\alpha_{00}|^2 + |\alpha_{01}|^2$
- What is the post-measurement state of the system given that the measurement output of the first qubit is 0?

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a unit vector in a two-dimensional complex vector space with |0⟩ and |1⟩ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - A two qubit system can be written as a superposition of computational basis states $\ket{00}, \ket{01}, \ket{10}, \ket{11}$:

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$$

- Can individual qubits be measured? Yes
- What is the probability that the measurement output of the first qubit is 0? $|\alpha_{00}|^2+|\alpha_{01}|^2$
- What is the post-measurement state of the system given that the measurement output of the first qubit is 0? $|\psi'\rangle = \frac{\alpha_{00}|00\rangle + \alpha_{01}|01\rangle}{\sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2}}$

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - An *n*-qubit system is a unit vector in a 2^n -dimensional complex vector space with computational basis states $|00...0\rangle$, ... $|11...1\rangle$.

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - An *n*-qubit system is a unit vector in a 2^n -dimensional complex vector space with computational basis states $|00...0\rangle$, ... $|11...1\rangle$.
- How do a system of qubits evolve or chage? Computation over classical bit systems can be expressed in terms of circuits. Can we do something similar for qubit systems?

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - An *n*-qubit system is a unit vector in a 2^n -dimensional complex vector space with computational basis states $|00...0\rangle$, ... $|11...1\rangle$.
- How do a system of qubits evolve or chage? Computation over classical bit systems can be expressed in terms of circuits. Can we do something similar for qubit systems?
 - Yes. The Quantum counterpart of classical circuits are called quantum circuits that has quantum gates.

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - An *n*-qubit system is a unit vector in a 2^n -dimensional complex vector space with computational basis states $|00...0\rangle$, ... $|11...1\rangle$.
- How do a system of qubits evolve or chage? Computation over classical bit systems can be expressed in terms of circuits. Can we do something similar for qubit systems? Quantum circuit

Quantum Circuit

Single qubit gates:

There is only one single-input logical gate in the classical setting, the NOT gate. What could be a quantum version of such a gate?

• The general state of a qubit is expressed as $\alpha \, |0\rangle + \beta \, |1\rangle$. The quantum version of NOT gate does the following conversion:

$$\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |1\rangle + \beta |0\rangle$$

This is known as the X gate.

- The general state of a qubit can be written using matrix notation as $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. The X gate operating on the qubit can then be interpreted as a simple matrix multiplication where $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- In general single-qubit gates can be expressed as 2×2 complex matrices. Can any 2×2 matrix represent a valid single-qubit gate?

Single qubit gates:

There is only one single-input logical gate in the classical setting, the NOT gate. What could be a quantum version of such a gate?

• The general state of a qubit is expressed as $\alpha \, |0\rangle + \beta \, |1\rangle$. The quantum version of NOT gate does the following conversion:

$$\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |1\rangle + \beta |0\rangle$$

This is known as the X gate.

- The general state of a qubit can be written using matrix notation as $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. The X gate operating on the qubit can then be interpreted as a simple matrix multiplication where $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- \bullet In general single-qubit gates can be expressed as 2 \times 2 complex matrices. Can any 2 \times 2 matrix represent a valid single-qubit gate? No
 - Is [¹/₁ ¹/₀] a valid single-qubit gate?

Single qubit gates:

There is only one single-input logical gate in the classical setting, the NOT gate. What could be a quantum version of such a gate?

• The general state of a qubit is expressed as $\alpha \, |0\rangle + \beta \, |1\rangle$. The quantum version of NOT gate does the following conversion:

$$\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \rightarrow \alpha \left| \mathbf{1} \right\rangle + \beta \left| \mathbf{0} \right\rangle$$

This is known as the X gate.

- The general state of a qubit can be written using matrix notation as [^α_β]. The X gate operating on the qubit can then be interpreted as a simple matrix multiplication where X ≡ [⁰₁ ¹₀].
- In general single-qubit gates can be expressed as 2×2 complex matrices. Can any 2×2 matrix represent a valid single-qubit gate? No
 - Is [¹/₁ ¹/₀] a valid single-qubit gate? No
 - In general, if the state after applying the gate is $\alpha' \, |0\rangle + \beta' \, |1\rangle$, then $|\alpha'|^2 + |\beta'|^2 = 1$.
 - A necessary condition to ensure this is that the matrix is unitary. That is, $U^{\dagger}U=I$.
 - This also happens to be a sufficient condition for any quantum gate.
 - One implication of this fact is that there can be infinitely many single-qubit gates.

- Single qubit gates: Frequently used gates
 - ullet X gate: Analogue of classical NOT gate with matrix representation

$$X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

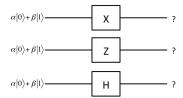
• Z gate: Matrix representation:

$$Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

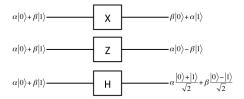
• *H* gate: Called Hadamard gate with matrix representation:

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

- Single qubit gates: Frequently used gates
 - X gate: Analogue of classical NOT gate with matrix representation $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - Z gate: Matrix representation: $Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - \overline{H} gate: Called Hadamard gate with matrix representation: $\overline{H} \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.



- Single qubit gates: Frequently used gates
 - X gate: Analogue of classical NOT gate with matrix representation $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - Z gate: Matrix representation: $Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - \overline{H} gate: Called Hadamard gate with matrix representation: $\overline{H} \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.



Multiple qubit gates:

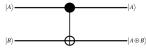
- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold?

Multiple qubit gates:

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
 - NAND gate is irreversible. That is one cannot obtain A and B from $A \wedge B$.
 - Quantum gates are constrained to be reversible.
 - Unitary gates (operations using unitary matrices) are invertible and hence reversible.

Multiple qubit gates:

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes
 - This is called the controlled-NOT gate or CNOT gate.



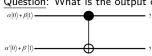
• More precisely, the matrix representing the gate is given by

$$U_{CN} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• Multiple qubit gates:

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes
 - This is called the controlled-NOT gate or CNOT gate.
 - More precisely, the matrix representing the gate is given by

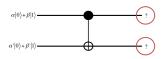
$$U_{CN} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$



Multiple qubit gates:

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes
 - This is called the controlled-NOT gate or CNOT gate.
 - More precisely, the matrix representing the gate is given by

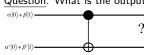
$$U_{CN} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$



• Multiple qubit gates:

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes
 - This is called the controlled-NOT gate or CNOT gate.
 - More precisely, the matrix representing the gate is given by

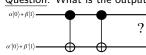
$$U_{CN} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$



• Multiple qubit gates:

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes
 - This is called the controlled-NOT gate or CNOT gate.
 - More precisely, the matrix representing the gate is given by

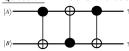
$$U_{CN} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$



• Multiple qubit gates:

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes
 - This is called the controlled-NOT gate or CNOT gate.
 - More precisely, the matrix representing the gate is given by

$$U_{CN} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$



Multiple qubit gates:

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes the CNOT gate
 - This is called the controlled-NOT gate or CNOT gate.
 - More precisely, the matrix representing the gate is given by

$$U_{CN} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

 <u>Claim</u>: Any multiple qubit logic gate may be composed from CNOT and single qubit gates.

Multiple qubit gates:

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes the CNOT gate

Measurements:

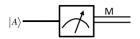
- We now have a high-level understanding of how a quantum circuit evolves. What can be obtain or measure from the circuit?
- We said that we can measure a qubit in the computation basis |0⟩
 and |1⟩ which are just one orthonormal basis. Can we measure in
 some other orthonormal basis?

Measurements:

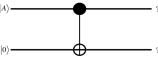
- We now have a high-level understanding of how a quantum circuit evolves. What can be obtain or measure from the circuit?
- We said that we can measure a qubit in the computation basis $|0\rangle$ and $|1\rangle$ which are just one orthonormal basis. Can we measure in some other orthonormal basis? Yes
 - We can measure in any orthonormal basis $|a\rangle$, $|b\rangle$. If the state of the qubit can be expressed as $\alpha |a\rangle + \beta |b\rangle$, then the measurement result is a with probability $|\alpha|^2$ and b with probability $|\beta|^2$.
 - One such popular basis is the $|+\rangle$, $|-\rangle$ basis that are expressed as $|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ and $|-\rangle = \frac{|0\rangle |1\rangle}{\sqrt{2}}$.
 - Question: Express $\alpha \ket{0} + \beta \ket{1}$ in the $\ket{+}, \ket{-}$ basis.

Measurements:

- We now have a high-level understanding of how a quantum circuit evolves. What can be obtain or measure from the circuit?
- We said that we can measure a qubit in the computation basis $|0\rangle$ and $|1\rangle$ which are just one orthonormal basis. Can we measure in some other orthonormal basis? Yes
 - We can measure in any orthonormal basis $|a\rangle$, $|b\rangle$. If the state of the qubit can be expressed as $\alpha |a\rangle + \beta |b\rangle$, then the measurement result is a with probability $|\alpha|^2$ and b with probability $|\beta|^2$.
 - One such popular basis is the $|+\rangle$, $|-\rangle$ basis that are expressed as $|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ and $|-\rangle = \frac{|0\rangle |1\rangle}{\sqrt{2}}$.
 - In quantum circuit diagrams, measurement of a qubit is represented as below:

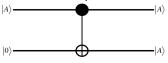


Some exercises:



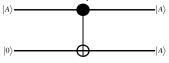
Some exercises:

• What is the output of the following circuit?

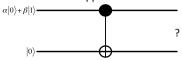


So, is the above circuit a qubit-copying circuit?

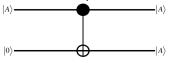
Some exercises:



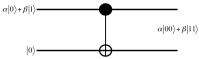
- So, is the above circuit a qubit-copying circuit? No
 - Consider what happens in the following circuit?



Some exercises:



- So, is the above circuit a qubit-copying circuit? No
 - Consider what happens in the following circuit?



End