Name:

Entry number:

There are 1 questions for a total of 10 points.

- 1. (10 points) Let $N \ge 2$ be an arbitrary positive integer and let $a \in \mathbb{Z}_N^*$ such that order of a modulo N divides N. Suppose you are given the following n-qubit quantum gates, where $2 \le N \le 2^n 1$.
 - 1. U_N : This gate returns a uniform superposition of states $|0\rangle$, $|1\rangle$, ..., $|N-1\rangle$ when given input $|0\rangle$.
 - 2. QFT_N : This performs the Quantum Fourier transform on orthonormal basis $|0\rangle, ..., |N-1\rangle$.
 - 3. $\mathsf{ME}_{a,N}$: This performs the operation $|z\rangle |y\rangle \rightarrow |z\rangle |a^z y \pmod{N}$.

Construct a quantum circuit that finds the order of a modulo N using just the above gates. You may also use controlled operations. Discuss correctness and running time of your algorithm.

.