Name:

Entry number: \qquad
There are 1 questions for a total of 10 points.

1. (10 points) Let $N \geq 2$ be an arbitrary positive integer and let $a \in \mathbb{Z}_{N}^{*}$ such that order of a modulo N divides N. Suppose you are given the following n-qubit quantum gates, where $2 \leq N \leq 2^{n}-1$.
2. U_{N} : This gate returns a uniform superposition of states $|0\rangle,|1\rangle, \ldots,|N-1\rangle$ when given input $|0\rangle$.
3. QFT_{N} : This performs the Quantum Fourier transform on orthonormal basis $|0\rangle, \ldots,|N-1\rangle$.
4. $\mathrm{ME}_{a, N}$: This performs the operation $|z\rangle|y\rangle \rightarrow|z\rangle\left|a^{z} y(\bmod N)\right\rangle$.

Construct a quantum circuit that finds the order of a modulo N using just the above gates. You may also use controlled operations. Discuss correctness and running time of your algorithm.

