Name:

Entry number: \qquad
There are 3 questions for a total of 10 points.

1. Answer the following questions:
(a) (2 points) Let $M=H T H T$. Show that the action of operator M on any qubit is the same as rotating the Bloch sphere about an axis along $\vec{n}=\left(\cos \frac{\pi}{8}, \sin \frac{\pi}{8}, \cos \frac{\pi}{8}\right)$ with corresponding unit vector \hat{n} through an angle θ defined by $\cos \frac{\theta}{2} \equiv \cos ^{2} \frac{\pi}{8}$.
(b) (2 points) Show that $H T H=R_{x}(\pi / 4)$.
(c) (1 point) Draw the circuit for swapping two qubits using only CNOT gates.
2. (2 points) Let U be a single qubit operator with eigenvalues ± 1 so that U can also be treated as an observable. Show that measuring any qubit using the observable U has the same measurement statistics as measuring the first qubit in the computational basis in the circuit below.

3. (3 points) Provide a decomposition of the transform

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
i & 0 & 0 & i \\
0 & -i & -i & 0 \\
-i & 0 & 0 & i \\
0 & i & -i & 0
\end{array}\right]
$$

into a product of two-level unitaries.

Space for rough work

