Name:

Entry number: $\qquad$

There are 3 questions for a total of 10 points.

1. A P-matrix is a matrix $\Pi \in \mathbb{C}^{n \times n}$ such that $\Pi^{2}=\Pi$. Answer the following question:
(a) ( $1 / 2$ point) State true or false: For any Hermitian matrix $\Pi \in \mathbb{C}^{n \times n}$, $\Pi$ is a $P$-matrix if and only if $\Pi=\sum_{i=1}^{k}\left|v_{i}\right\rangle\left\langle v_{i}\right|$ for some orthonormal vectors $\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{k}\right\rangle \in \mathbb{C}^{n}$.
(a) $\qquad$
(b) (2 points) Give reasons for your answer to part (a).
2. An operator $M$ on a finite dimensional vector space $V$ with inner products is said to be norm preserving if for every $|w\rangle \in V, \||w\rangle\|=\| M|w\rangle \|$. Answer the following question.
(a) $\left(2 \frac{1}{2}\right.$ points) Let $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ be an orthogonal orthonormal basis for $V$. What conditions on numbers $a_{1}, \ldots, a_{n} \in \mathbb{C}$ are necessary and sufficient for $M \equiv \sum_{i=1}^{n} a_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|$ to be norm preserving? Give reasons.
3. (5 points) Show that any positive operator on a finite dimensional inner product space is necessarily a Hermitian.
