Name:

Entry number:

There are 3 questions for a total of 10 points.

- 1. A *P*-matrix is a matrix $\Pi \in \mathbb{C}^{n \times n}$ such that $\Pi^2 = \Pi$. Answer the following question:
 - (a) (¹/₂ point) <u>State true or false</u>: For any Hermitian matrix $\Pi \in \mathbb{C}^{n \times n}$, Π is a *P*-matrix if and only if $\Pi = \sum_{i=1}^{k} |v_i\rangle \langle v_i|$ for some orthonormal vectors $|v_1\rangle, |v_2\rangle, ..., |v_k\rangle \in \mathbb{C}^n$.

(a) _____

(b) (2 points) Give reasons for your answer to part (a).

- 2. An operator M on a finite dimensional vector space V with inner products is said to be norm preserving if for every $|w\rangle \in V$, $|| |w\rangle || = ||M|w\rangle ||$. Answer the following question.
 - (a) $(2^{1}/_{2} \text{ points})$ Let $|v_{1}\rangle, ..., |v_{n}\rangle$ be an orthogonal orthonormal basis for V. What conditions on numbers $a_{1}, ..., a_{n} \in \mathbb{C}$ are necessary and sufficient for $M \equiv \sum_{i=1}^{n} a_{i} |v_{i}\rangle \langle v_{i}|$ to be norm preserving? Give reasons.

3. (5 points) Show that any positive operator on a finite dimensional inner product space is necessarily a Hermitian.