COL863: Quantum Computation and Information

Homework: 02

1. Exercises from the book: $2.2,2.3,2.4,2.7,2.8,2.9,2.10,2.11,2.12,2.13,2.14,2.15,2.16$, $2.17,2.18,2.19,2.20,2.22,2.23,2.24,2.25,2.26,2.27,2.28,2.29,2.30,2.31,2.32,2.33$, 2.34, 2.57.
2. Exercise 2.64: Suppose Bob is given a quantum state chosen from a set $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \ldots,\left|\psi_{m}\right\rangle$ of linearly independent states. Construct a POVM $\left\{E_{1}, E_{2}, \ldots, E_{m+1}\right\}$ such that if outcome E_{i} occurs, $1 \leq i \leq m$, then Bob knows with certainty that he was given the state $\left|\psi_{i}\right\rangle$.
