
COL863: Quantum Computation and Information
Homework: 01

1. P = NP has a lot of interesting consequences. One consequence is that one-way functions
do not exist if P = NP. This is significant since much of known cryptography is based
on the existence of one-way functions. In other words, Cryptography is built on an
assumption that is stronger than P 6= NP. In this question you are asked to show this
formally. First, we look at the definition of one-way functions.

Definition 1.0.1 (One Way Function) A function f : {0, 1}∗ → {0, 1}∗ is called a
one way function if the following two conditions hold:

(a) (Easy to compute:) There exists a polynomial-time algorithm Mf computing f ; that
is, Mf (x) = f(x) for all x.

(b) (Hard to invert:) For every PPT algorithm A, there exists a negligible function negl
(a function that is smaller than any polynomial) such that

Pr[InvertA,f (n) = 1] ≤ negl(n)

Where InvertA,f (n) denotes the following experiment:
InvertA,f (n)

- Choose input x← {0, 1}n. Compute y = f(x).

- Execute A with inputs 1n and y. Let x′ be the output of A.

- The output of the experiment is defined to be 1 if f(x′) = y, and 0 otherwise.

Argue that if P = NP, then one way functions do not exist.
(I gave this question since this was raised in the class discussions. You only need to argue
at a very high level.)

2. Can the following two-qubit state |00〉+|11〉√
2

be represented as (α |0〉+β |1〉)(α′ |0〉+β′ |1〉)?

3. Can there exist a single qubit gate with the following truth table? Give reasons.

Input Output

|0〉
√
3
2 |0〉+ 1

2 |1〉
|1〉 1

2 |0〉+
√
3
2 |1〉
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4. Show that there exist a single qubit gate with the following truth table? Give the matrix
representation of such a gate.

Input Output

|0〉
√
3
2 |0〉 −

1
2 |1〉

|1〉 1
2 |0〉+

√
3
2 |1〉

5. Draw the classical circuit for computing the Boolean function f : {0, 1}2 → {0, 1} given
by the following truth table.

x f(x)

00 1

01 0

10 1

11 0

Give the Quantum analogue of your classical circuit using Toffoli gates.

6. Output |ψ〉 when the input to the circuit is |000〉. Output |ψ〉 when the input is
[α |0〉+ β |1〉] |00〉.

7. Output |ψ〉 when the input to the circuit is |000〉. Output |ψ〉 when the input is
[α |0〉+ β |1〉] |00〉.
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8. Can you use a single qubit as a source of randomness? How?

9. In this problem, we will discuss the principle of deferred measurement. The main idea
is that any (randomized) computation that a quantum circuit can perform by making
intermediate measurements can also be performed by a slightly modified circuit that does
all measurements at the very end. Let us try to understand the subtleties of this point
(which we did not discuss in the class). Consider the following single qubit circuit:

What is the output |ψ〉? A bit of thinking tells you that the output is not a “pure” state
but a randomized state. That is, |ψ〉 is |0〉 with probability 1/2 and |1〉 with probability
1/2. This is because the measurement collapses the state of the qubit to either |0〉 or
|1〉. Now, you can imagine a multiple-qubit circuit that uses intermediate measurements.
The output state of the multiple qubit system will be a mixture of states. This can
be useful in a lot of computational settings where it can be interpreted as randomized
computation. It would be theoretically much simpler if all the measurements were taken
at the end of the circuit (as we have seen in all examples discussed in the class). This is
actually possible by using some ancilla input qubits. Here I will only give you the main
idea and then ask you to fill out the details for the general problem. Let us go back
to our previous example. Suppose we want to simulate this circuits behaviour without
making the intermediate measurement. Consider the following circuit:

Suppose we make a measurement on only the first qubit at the end. Does the measure-
ment behaviour of this qubit remains that same as in the previous case where we also
made an intermediate measurement? Use this idea to convince yourself of the principle
of deferred measurements.
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