Name:
Entry number: \qquad
There are 3 questions for a total of 20 points.

1. (6 points) Find the eigenvalues and corresponding eigenvectors for the following matrices (corresponding to single qubit gates):

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad S=\left[\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right] \quad H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

2. (6 points) Suppose Bob is given a quantum state chosen from a set $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \ldots,\left|\psi_{m}\right\rangle$ of linearly independent states. Construct a POVM $\left\{E_{1}, E_{2}, \ldots, E_{m+1}\right\}$ such that if outcome E_{i} occurs, $1 \leq i \leq m$, then Bob knows with certainty that he was given the state $\left|\psi_{i}\right\rangle$.
3. (8 points) Suppose you have two qubits in the bell state $\frac{|01\rangle-|10\rangle}{\sqrt{2}}$ and you apply the teleportation protocol to the first qubit. What is the result? (Please try giving an appropriate interpretation for your calculations.)

Space for rough work

